首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O2: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen?iodine laser based on a slab cryogenic RF discharge.  相似文献   

2.
Results are presented from experimental studies of electromagnetic emission and plasma oscillations in the plasma-frequency range in the Octupole Galathea confinement system. Experiments are performed in the electric-discharge mode at low magnetic fields (the barrier field is 0.002–0.01 T); the working gas is argon or hydrogen. It is found that the most intense microwave oscillations at frequencies of 1–5 GHz are excited near the plasma axis and in the magnetic-barrier region. The oscillations are excited by the discharge current and decay after the voltage is switched off. The experiments show that microwave oscillations excited in the magnetic-barrier region are responsible for the small value of the energy confinement time in the system.  相似文献   

3.
Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (~18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ~2 to ~11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results.  相似文献   

4.
The reactions between superoxide free radical anion (.O2) with the halocarbons CCl4, CHCl3, BrCH2CH2Br(EDB), decachloro-biphenyl (DCBP), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in dimethyl sulphoxide (DMSO) results in the emission of chemiluminescence (CL). The chemiluminescence reactions are characterized as having biphasic second order kinetics, CL wavelengths between 350 nm and 650 nm, and exhibiting perturbation by chemicals reactive with singlet oxygen. These data suggest that singlet oxygen species are the excited state responsible for the light emissions. Polarographic studies confirm .O2 consumption and halide release in the reactions, while gas liquid chromatography and NBT reduction demonstrate the decomposition of the halocarbons into products. A chemiluminescent reaction mechanism is proposed involving reductive dehalogenation of the halocarbons and the generation of singlet oxygen. The significance of singlet oxygen generation is discussed with respect to a general mechanism for explaining the rapid initiation of lipid peroxidative membrane damage in halocarbon toxigenicity in animal and plant tissues.  相似文献   

5.
Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O2(1Δg). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O2(1Δg) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high. O2(1Δg) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O2(1Δg) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data.  相似文献   

6.
The suitability of a liposomal form of hydrophobic nonsulfonated meso-tetraphenyl porphyrin (TPP) for the photodynamic therapy of tumors was investigated. TPP was solubilized in small unilamellar lipid vesicles prepared by extrusion on a LIPOSOFAST apparatus. These samples were studied by laser-excited time resolved luminescence and triplet-triplet absorption spectroscopy. In this lipid environment TPP was still an efficient singlet oxygen producer, as indicated by the characteristic singlet oxygen phosphorescence at 1270 nm in D2O, when excited with a 28 ns laser pulse at 412 nm. Moreover, unlike with sulfonated TPP (TPPS4), liposomal TPP showed the reduced decay rates of TPP triplet-states with the increasing time of pre-illumination by a Xenon lamp. This was shown in an indirect way, based upon the appearance of a second component of the luminescence decay at 1270 nm in D2O; and by direct TPP triplet state monitoring, detecting triplet-triplet absorption at 440 nm in H2O. The deactivation of higher triplet states was delayed upon pre-illumination. This reflects an irreversible interaction of singlet oxygen with membrane lipids, thus demonstrating the potential of the liposomal form of TPP to efficiently disintegrate tumor cell membranes and to be a suitable preparation for the photodynamic therapy.  相似文献   

7.
A rapid heating of nitrogen-oxygen mixtures excited by gas discharges is investigated numerically with allowance for the following main processes: the reactions of predissociation of highly excited electronic states of oxygen molecules (which are populated via electron impact or via the quenching of the excited states of N2 molecules), the reactions of quenching of the excited atoms O(1 D) by nitrogen molecules, the VT relaxation reactions, etc. The calculated results adequately describe available experimental data on the dynamics of air heating in gas-discharge plasmas. It is shown that, over a broad range of values of the reduced electric field E/N, gas heating is maintained by a fixed fraction of the discharge power that is expended on the excitation of the electronic degrees of freedom of molecules (for discharges in air, ηE?28%). The lower the oxygen content of the mixture, the smaller the quantity ηE. The question of a rapid heating of nitrogen with a small admixture of oxygen is discussed.  相似文献   

8.
Vitamin E offers protection against oxidative stress and is an efficient quencher of singlet oxygen. A recent report suggests that photo-excitation of vitamin E results in the formation of a triplet state (Naqvi et al. Photochem Photobiol Sci 2, 381 (2003)). This leads to the possibility of the triplet state of vitamin E being able to sensitize singlet oxygen and if this is the case it would be counter productive in terms of the biological protective function of vitamin E. We report the production of singlet oxygen, detected by 1270 nm luminescence, from pulsed laser excitation (308 nm) of vitamin E and an analogue, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC), with quantum yields between ∼0.1 and 0.2. The luminescence was identified as singlet oxygen from self-quenching by vitamin E with solvent-dependent rate constants similar to published values. Whilst the beneficial antioxidant aspects of vitamin E are well established, these results indicate that vitamin E when directly excited can sensitize singlet oxygen formation and may, therefore, be capable of inducing biochemical and biological damage. The results are discussed in relation to recent reports on the deleterious effects of vitamin E dietary supplementation and pro-oxidant effects of vitamin E.  相似文献   

9.
The investigation in this report aimed at providing photophysical evidence that the long-lived triplet excited state plays an important role in the non-single-exponential photobleaching kinetics of fluorescein in microscopy. Experiments demonstrated that a thiol-containing reducing agent, mercaptoethylamine (MEA or cysteamine), was the most effective, among other commonly known radical quenchers or singlet oxygen scavengers, in suppressing photobleaching of fluorescein while not reducing the fluorescence quantum yield. The protective effect against photobleaching of fluorescein in the bound state was also found in microscopy. The antibleaching effect of MEA let to a series of experiments using time-delayed fluorescence spectroscopy and nanosecond laser flash photolysis. The combined results showed that MEA directly quenched the triplet excited state and the semioxidized radical form of fluorescein without affecting the singlet excited state. The triplet lifetime of fluorescein was reduced upon adding MEA. It demonstrated that photobleaching of fluorescein in microscopy is related to the accumulation of the long-lived triplet excited state of fluorescein and that by quenching the triplet excited state and the semioxidized form of fluorescein to restore the dye molecules to the singlet ground state, photobleaching can be reduced.  相似文献   

10.
A two-dimensional gas-dynamic model is applied to calculate the characteristics of the steady-state propagation of a microwave discharge excited by the H 10 waveguide mode. The stream pattern is found on the basis of gas dynamics of a slowly propagating discharge, taking into account the non-one-dimensional character of the gas flow ahead of the discharge front. The calculated values of the propagation velocity agree with the experimental results.  相似文献   

11.
Kinetic study of eosin-sensitized photochemoluminescence (PCL) in tripsin solutions was carried out. Kinetics of luminescence increase and decrease, connection between sensitized PCL with triptophane photodissociation in protein were investigated. Effect of the concentrations of protein and oxygen in solution on the parameters of eosin-sensitized PCL was studied in order to establish the succession of processes resulting in the formation of free radicals. The experimental data made it possible to propose a scheme of primary processes responsible for PCL, which shows that the formation of protein radicals proceeded in the reactions between the triplet excited states of dye and singlet oxygen and protein triptophyle residues. It was found that during the formation of radicals in the air at small concentrations of proteins singlet oxygen played a major role in the sensitized photooxidation of protein. It was shown that the mechanism of processes responsible for sensitized PCL, determining postluminescence is similar to tripsin chemoluminescence under UV-illumination. Some kinetic parameters of the processes proceeding during sensitized photooxidation were determined and estimated.  相似文献   

12.
Vitamin E offers protection against oxidative stress and is an efficient quencher of singlet oxygen. A recent report suggests that photo-excitation of vitamin E results in the formation of a triplet state (Naqvi et al. Photochem Photobiol Sci 2, 381 (2003)). This leads to the possibility of the triplet state of vitamin E being able to sensitize singlet oxygen and if this is the case it would be counter productive in terms of the biological protective function of vitamin E. We report the production of singlet oxygen, detected by 1270 nm luminescence, from pulsed laser excitation (308 nm) of vitamin E and an analogue, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC), with quantum yields between ~0.1 and 0.2. The luminescence was identified as singlet oxygen from self-quenching by vitamin E with solvent-dependent rate constants similar to published values. Whilst the beneficial antioxidant aspects of vitamin E are well established, these results indicate that vitamin E when directly excited can sensitize singlet oxygen formation and may, therefore, be capable of inducing biochemical and biological damage. The results are discussed in relation to recent reports on the deleterious effects of vitamin E dietary supplementation and pro-oxidant effects of vitamin E.  相似文献   

13.
The kinetics and mechanistic aspects of the riboflavin-photosensitised oxidation of the topically administrable ophthalmic drugs Timolol (Tim) and Pindolol (Pin) were investigated in water-MeOH (9:1, v/v) solution employing light of wavelength > 400 nm. riboflavin, belonging to the vitamin B(2) complex, is a known human endogenous photosensitiser. The irradiation of riboflavin in the presence of ophthalmic drugs triggers a complex picture of competitive reactions which produces the photodegradation of both the drugs and the pigment itself. The mechanism was elucidated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Ophthalmic drugs quench riboflavin-excited singlet and triplet states. From the quenching of excited triplet riboflavin, the semireduced form of the pigment is generated, through an electron transfer process from the drug, with the subsequent production of superoxide anion radical (O(2)(*-)) by reaction with dissolved molecular oxygen. Through the interaction of dissolved oxygen with excited triplet riboflavin, the species singlet oxygen (O(2)((1)Delta(g))) is also generated to a lesser extent. Both O(2)(*-) and O(2)((1)Delta(g)) induce photodegradation of ophthalmic drugs, Tim being approximately 3-fold more easily photooxidisable than Pin, as estimated by oxygen consumption experiments.  相似文献   

14.
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.  相似文献   

15.
Superoxide anion production by the autoxidation of cytochrome P450cam   总被引:5,自引:0,他引:5  
Chemiluminescence occurs on autoxidation of oxygenated ferrous cytochrome P450cam and is abolished by reagents that scavenge free radicals, by superoxide dismutase and singlet oxygen quenchers. We attribute the chemiluminescence to the decay of an excited singlet oxygen which arises from a superoxide anion radical precursor.  相似文献   

16.
Conventional airlift reactors are not adequate to carry out variable volume processes since it is not possible to achieve a proper liquid circulation in these reactors until the liquid height is higher than that of the downcomer. To carry out processes of variable volume, the use of a split-cylinder airlift reactor is proposed, in the interior of which two multi-perforated vertical baffles are installed in order to provide several points of communication between the reactor riser and downcomer. This improves the liquid circulation and mixing at any liquid volume. In fed-batch cultures, it is important to know how liquid height affects the hydrodynamic characteristics and the volumetric oxygen transfer coefficient since this impacts on the kinetic behavior of any fermentation. Thus, in the present work, the effect of the liquid height on the mixing time, the overall gas hold-up, and the volumetric oxygen transfer coefficient of the proposed airlift reactor were determined. The mixing time was increased and the volumetric oxygen transfer coefficient decreased due to the increase of the liquid height in the reactor in all the superficial gas velocities tested, which corresponded to a pseudohomogeneous flow regime. The experimental values of the mixing time and the mass-transfer coefficient were properly described through correlations in which the UGR/HL ratio was used as the independent variable. Thus, this variable might be used to describe the hydrodynamic behavior and the oxygen transfer coefficient of airlift reactors when such reactors are used in processes where the liquid volume changes with time. However, these correlations are useful for the particular device and for the particular operating conditions at which they were obtained. These empirical correlations are useful to understand some factors that influence the mixing time and volumetric oxygen transfer coefficient, but such correlations do not have a sufficient predictive potential for a satisfactory reactor design. The overall gas hold-up values were not significantly affected when the liquid height was lower than the downcomer height. However, the values decreased abruptly when the reactor was operated with liquid heights over the downcomer height, especially at high superficial gas velocities.  相似文献   

17.
The current dynamics in a non-self-sustained glow discharge in atmospheric-pressure nitrogen (with a small admixture of oxygen) at cryogenic and room temperatures is studied experimentally and theoretically. For the first time, the theoretical model incorporates the processes of the decomposition of O 2 + ·N2 and NO+·N2 complex ions in collisions with vibrationally excited nitrogen molecules and the associative ionization reactions with the participation of excited nitrogen and oxygen atoms. The computation results agree quite satisfactorily with the experimental data on the current dynamics and the duration of the stable phase of a non-self-sustained discharge for various applied voltages. Even a small (0.01%) oxygen admixture is found to greatly affect the dynamics of the ion composition and the characteristic duration of the stable phase of a non-self-sustained discharge in atmospheric-pressure nitrogen.  相似文献   

18.
Available data on the kinetic processes in H2-O2-O2(a 1Δ g ) mixtures are analyzed theoretically, and the ranges in which the rate constants of these processes can vary are determined. The processes of energy transformation in an O2(a 1Δ g )-H2-H-HO2 system in the approximations of the fast and slow (in comparison with the vibrational relaxation time of the HO2 radical) quenching of the electronically excited state are considered. The experiments on the quenching of singlet delta oxygen (SDO) molecules O2(a 1Δ g ) excited in a microwave discharge at a temperature of 300 K and pressure of 6 Torr in a lean hydrogen-oxygen mixture are simulated (by a lean fuel mixture is meant a mixture in which the ratio of the fuel to the oxidizer mass fraction is less than the stoichiometric ratio, which is 2: 1 for a hydrogen-oxygen mixture). It is shown that, over the experimental observation times, the SDO quenching frequency depends on the concentration of molecular hydrogen, the residual odd oxygen fraction in the gas flow, and the ratio between the rate constants of kinetic processes involving HO2 and HO2* radicals. Simulations of the microwave discharge and the transport of excited oxygen along the drift tube make it possible to determine the residual odd oxygen concentration in the gas flow. Recommendations on the choice of the rate constants for the O2(a 1Δ g ) + HO2)A″, v3″ = 0) ? O2 + HO2*(A′, v3′ = 1), HO2*(A′v3′ ≤ 1) + O2(a 1Δ g ) → HO2*(A′,v3′ ≥ 6) + O2, and HO2*(A′,v3′ ≤ 1) + O2(a 1Δ g ) → H + O2 + O2 processes are given. It is shown that, in the case of slow quenching in a H2-O2-O2(a 1Δ g ) mixture at a low temperature, the intensity of hydrogen oxidation is enhanced due to the reaction + HO2*(A′,v3′ ≤ 1) + O2(1Δ) → H + O2 + O2.  相似文献   

19.
Green plants use the xanthophyll cycle to regulate the flow of energy to chlorophylla within photosynthetic proteins. Under conditions of low light intensity violaxanthin, a carotenoid possessing nine conjugated double bonds, functions as an antenna pigment by transferring energy from its lowest excited singlet state to that of chlorophylla within light-harvesting proteins. When the light intensity increases, violaxanthin is biochemically transformed into zeaxanthin, a carotenoid that possesses eleven conjugated double bonds. The results presented here show that extension of the conjugation of the polyene lowers the energy of the lowest excited singlet state of the carotenoid below that of chlorophylla. As a consequence zeaxanthin can act as a trap for the excess excitation energy on chlorophylla pigments within the protein, thus regulating the flow of energy within photosynthetic light-harvesting proteins.  相似文献   

20.
《Free radical research》2013,47(9):718-730
Abstract

The response of HeLa cells to subcellular spatially localized two-photon irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. Upon irradiation under these conditions, a localized population of PpIX excited states can be produced with meaningful intracellular spatial resolution; the dimensions of the domain where the incident light flux is high enough for PpIX two-photon absorption are defined by the microscope optics and by the diffraction of light (spot diameter at beam waist of ?0.5–1.0 μm). In turn, the dimensions of the intracellular domain containing cytotoxic PpIX-sensitized singlet oxygen will likewise be confined. Most importantly, cell response (e.g., morphological signs of cell death) correlates with the light dose delivered and the intracellular domain irradiated. Thus, controlling light delivery can complement other techniques used to impart intracellular spatial localization in mechanistic studies of photoinitiated reactive oxygen species. Such controlled light delivery is also expected to be a particularly useful tool to study the so-called bystander effect in which a selectively-perturbed cell can influence a neighboring cell through intercellular signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号