首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Evoked synaptic potential were recorded extracellularly in experiments on a nervemuscle preparation of the frog sartorius muscle. A decrease in evoked transmitter release was found from the proximal to the distal parts of the nerve ending, due to a decrease in the probability of transmitter quantum release. The terminal portions of the synapse are less sensitive than the proximal parts to changes in Ca++ concentration, they show less marked facilitation of transmitter release during paired and repetitive stimulation, and exhibit deeper and more rapidly developing depression. It is concluded that differences in transmitter release in the terminal parts of the synapse are due to the low reserves of transmitter and the lower premeability of the presynaptic membrane to Ca++.  相似文献   

2.
The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release.  相似文献   

3.
In experiments on the frog motor nerve endings of cutaneous pectoris muscle using fluorescent microscopy it has been shown that initiation of massive transmitter release of synaptic vesicles by high potassium solutions in using endocytotic marker FM 1-43 at the nerve terminals light spots occurred only at some of the nerve terminals or at the some parts of nerve terminal. It has been revealed that application of caffeine increased the number of light terminals. Using extracellular microelectrode recording, we showed that both high potassium solutions and caffeine increased frequency of miniature end-plate potentials in a dose-dependent manner. However, high potassium solutions always increased the frequency of spontaneous transmitter release while caffeine increased it only in some experiments. It was concluded that processes of exo- and endocytosis can be caused both by entry of Ca ions at the nerve ending during depolarization (high potassium solutions) and by Ca release from endoplasmic reticulum (caffeine). Possible spatial localization of endoplasmic reticulum at the motor nerve ending is discussed. The hypothesis of its role at the remodeling of synapse was proposed.  相似文献   

4.
The objective of this article is to illustrate how choline analogues might provide insight into mechanisms that regulate the synthesis, storage, and release of acetylcholine (ACh). Studies with false neurotransmitters provide information about the origin of releasable transmitter. Thus, false esters that distribute like ACh to vesicle-bound stores are as releasable as is ACh, but esters that poorly localize to synaptic vesicles are poorly releasable. Studies of choline analogue uptake provide information about the structural specificity of that transport process and, also, show that choline uptake is regulated in response to activity. Thus, stimuli that normally release transmitter increase the rate of choline transport, presumably to provide more precursor for ACh synthesis. However, the relationship between precursor delivery and product formed can be dissociated, suggesting that some factor in addition to choline delivery is involved in ACh synthesis regulation. Studies with a compound (AH5183), which inhibits ACh uptake by synaptic vesicles, provide information about the relationship of ACh stores and releasable transmitter. In the presence of AH5183 some 15% of nerve terminal ACh is released in response to nerve impulses, suggesting the existence of a small population of vesicles that contain readily releasable ACh. In presence of AH5183, ACh synthesis is activated even when ACh release is depressed, showing that transmitter synthesis can be regulated by some factor other than nerve terminal ACh levels.  相似文献   

5.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

6.
These experiments measured the effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of acetylcholine (ACh) and its subcellular distribution in slices of rat striatum incubated in vitro. The AH5183, a drug that blocks the uptake of ACh by isolated synaptic vesicles, reduced the release of ACh from slices stimulated to release transmitter in response to K+ depolarization. Tissue stimulated in the presence of AH5183 contained more ACh in a nerve terminal cytoplasmic fraction than did tissue stimulated in the drug's absence, but stimulation in AH5183's presence reduced the amount of ACh measured in fractions containing synaptic vesicles. The depletion of ACh caused by stimulating tissue in the presence of AH5183 was more evident in the fraction of nerve terminal ACh occluded within synaptic vesicles as isolated by gradient centrifugation (fraction D) than it was in other nerve terminal occluded stores. It is concluded that the synaptic vesicles isolated as fraction D under the present experimental conditions likely contain releasable transmitter. The AH5183 also depressed the spontaneous release of ACh from incubated slices of striatum and this effect was evident in the presence or the absence of medium Ca2+. It is suggested that this effect might indicate that the process of spontaneous ACh release measured neurochemically results, in part, from an AH5183-sensitive carrier-mediated process.  相似文献   

7.
In experiments on the frog cutaneous-pectoris muscle under the visual control the evoked responses of nerve endings were recorded in proximal, central and distal parts of the terminal. At the fixed position of the recording electrode the local iontophoretic application of TTX to different terminal parts and Ranvier's nodes was performed. It was concluded, that local currents at more proximal terminal parts provide the depolarization of the located parts and conduction of excitation to the nonexcitable parts. Inward currents at behind located and already excited parts are shortened and decreased by local currents from more distal parts during the propagation of excitation. It results in shortening of the action potential and decreasing of the transmitter release in more proximal parts. This effect disappeared along the nerve terminal due to decreasing of inward Na current at the end parts.  相似文献   

8.
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.The speed and potency of synaptic transmission depend on the immediate availability of synaptic vesicles filled with high concentrations of neurotransmitter. In this article, we focus on the mechanisms responsible for packaging transmitter into synaptic vesicles and for reuptake from the extracellular space that both terminates synaptic transmission and recycles transmitter for future rounds of release. Collectively, we refer to this entire process as the neurotransmitter cycle.The recycling of neurotransmitter illustrates a general, conceptual problem for the mechanism of vesicular release. At the plasma membrane, more active reuptake should help to replenish the pool of releasable transmitter, but may also reduce the extent and duration of signaling to the postsynaptic cell. Conversely, loss of reuptake increases the activation of receptors but results in the depletion of stores (Jones et al. 1998). At the vesicle, steeper concentration gradients release more transmitter per vesicle but reduce the cytosolic transmitter available for refilling, whereas more shallow gradients facilitate refilling but reduce the transmitter available for release. The way in which the nerve terminal balances these competing factors thus has profound consequences for synaptic transmission.  相似文献   

9.
The present experiments tested whether preganglionic stimulation and direct depolarization of nerve terminals by tityustoxin could mobilize similar or different pools of acetylcholine (ACh) from the cat superior cervical ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol, AH5183), an inhibitor of ACh uptake into synaptic vesicles. In the absence of vesamicol, both nerve stimulation and tityustoxin increased ACh release. In the presence of vesamicol, the release of ACh induced by tityustoxin was inhibited, and just 16% of the initial tissue content could be released, a result similar to that obtained with electrical stimulation under the same condition. When the impulse-releasable pool of ACh had been depleted, tityustoxin still could release transmitter, amounting to some 10% of the ganglion's initial content. This pool of transmitter seemed to be preformed in the synaptic vesicles, rather than synthesized in response to stimuli, as tityustoxin could not release newly synthesized [3H]ACh formed in the presence of vesamicol, and hemicholinium-3 did not prevent the toxin-induced release. In contrast to the results with tityustoxin, preganglionic stimulation could not release transmitter when impulse-releasable or toxin-releasable compartments had been depleted. Our results confirm that vesamicol inhibits the mobilization of transmitter from a reserve to a more readily releasable pool, and they also suggest that, under these experimental conditions, there might be some futile transmitter mobilization, apparently to sites other than nerve terminal active zones.  相似文献   

10.
Synaptic terminals on branches of an excitatory motor axon in a spider crab (Hyas areneas) were examined by electron microscopy to determine whether differences in size, structure, and number of synapses could be correlated with differences in transmitter release. Terminals releasing relatively large amounts of transmitter during low frequencies of nerve impulses ("high-output" terminals) had larger synapses, more prominent presynaptic dense bodies (active zones), and fewer synapses per unit length than terminals releasing relatively small amounts of transmitter ("low-output" terminals). Neither the difference in synaptic area, nor the quantitative differences in the active zones, were sufficient in themselves to explain the difference in synaptic efficacy, and it is postulated that a non-linear relationship may exist between structural features of the synapse and release of transmitter by a nerve impulse, and that differences other than those apparent from the ultrastructure could be involved. Greater facilitation at low-output terminals with high frequencies of nerve impulses may be due to greater reserves of "immediately available" transmitter, and to recruitment or activation of more individual synaptic contacts.  相似文献   

11.
IT is known from earlier studies of regeneration of neuromuscular synapses in the frog1 that the nerve fibres return to the region of the original end-plate and that there is a time after the ending has re-established synaptic contact during which a nerve impulse fails to evoke transmitter release, even though spontaneous release occurs. Even after neuromuscular transmission is restored, the response latency is longer than usual and the nerve is more liable to presynaptic failure of propagation1. This study is part of an attempt to examine in more detail the characteristics of transmitter release during this period.  相似文献   

12.
Zefirov AL  Gafurov OSh 《Biofizika》2000,45(3):556-564
The influence of both growth and branching of a nerve terminal on the asynchronism of transmitter release and the time-course of evoked postsynaptic responses was investigated using a model of a frog neuromuscular synapse in which the nerve terminal represents a population of spatially isolated active zones. It was shown that the appearance of additional branching in proximal parts of the nerve ending leads to decrease in the asynchronism of transmitter release, an increase in quantum content and the amplitude of the postsynaptic signal, and the shortening of its phase of growth. It was found that the asynchronism of transmitter release has a much stronger influence on the time-course of end plate currents compared with end plate potentials. The factors strengthening and weakening the asynchronism of transmitter release in a neuromuscular synapse and the reasons for various length and branching of vertebrate nerve terminals are considered.  相似文献   

13.
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.  相似文献   

14.
This study aimed to test whether nerve-evoked and adenosine-induced synaptic depression are due to reduction in Ca2+ entry in nerve terminals of the frog neuromuscular junction. Nerve terminals were loaded with the fluorescent Ca2+ indicator fluo 3 (fluo 3-AM) or loaded with dextran-coupled Ca2+ green-1 transported from the cut end of the nerve. Adenosine (10-50 microM) did not change the resting level of Ca2+ in the presynaptic terminal, whereas it induced large Ca2+ responses in perisynaptic Schwann cells, indicating that adenosine was active and might have induced changes in the level of Ca2+ in the nerve terminal. Ca2+ responses in nerve terminals could be induced by nerve stimulation (0.5 or 100 Hz for 100 ms) over several hours. In the presence of adenosine (10 microM), the size and duration of the nerve-evoked Ca2+ responses were unchanged. When extracellular Ca2+ concentration was lowered to produce the same reduction in transmitter release as the application of adenosine, Ca2+ responses induced by nerve stimulations were reduced by 40%. This indicates that changes in Ca2+ responsible for the decrease in release should have been detected if the mechanism of adenosine depression involved partial block of Ca2+ influx. Ca2+ responses evoked by prolonged high frequency trains of stimuli (50 Hz for 10 or 30 s), which caused profound depression of transmitter release, were sustained during the whole duration of the stimulation, and adenosine had no effect on these responses. These data indicate that neither adenosine induced synaptic depression nor stimulation-induced synaptic depression are caused by reductions in Ca2+ entry into the presynaptic terminal in the frog neuromuscular junction.  相似文献   

15.
The effect of Ca2+ removal from the external medium on regulation of the release of the synaptic transmitter in the tetanus toxin (TT)-inhibited neuromuscular junctions was studied on a rat phrenicodiaphragmal preparation with the aid of the conventional microelectrode technique of recording synaptic activity. As the external concentration of calcium was decreased from 2 to 0 mM, the frequency of miniature end plate potentials remained unchanged in the preparations isolated 3 to 3.5 h after intramuscular injection of TT (10(5) MLD for mouse). TT considerably reduced activation of the transmitter release, caused in intact synapses by ouabain (0.1 mM) and repetitive stimulation of the diaphragmatic nerve (50 imp/s). The data obtained indicate that in the TT-inhibited motor nerve terminals, the level of the transmitter release does not depend on the external concentration of calcium and that TT damages some of the intracellular sources of calcium.  相似文献   

16.
We investigated synaptic ultrastructure of individual nerve ending varicosities at the Drosophila larval neuromuscular junction in transgenic larvae overexpressing the learning gene dunce (dnc) in the nervous system. It was previously shown that cAMP is reduced to one-third normal in these larvae and that they have fewer nerve terminal varicosities and smaller junction potentials, although transmitter release from individual nerve ending varicosities is not significantly altered. We tested the hypothesis that synaptic ultrastructure is modified to compensate for possible reduced efficacy of synaptic transmission resulting from lower than normal cAMP. Synaptic size and number of presynaptic dense bodies (active zone structures) per synapse are modestly enhanced in transgenic larvae overexpressing the dnc gene product and in rutabaga (rut(1)) mutant larvae, which have reduced adenylyl cyclase activity and reduced neural cAMP. The incidence of complex synapses (possessing 2 or more presynaptic dense bodies) was not consistently different in experimental larvae compared to controls. The observations suggest that chronic reduction of cAMP levels in the nervous system of Drosophila larvae, although leading to a modest compensatory change in synaptic structure, does not markedly alter several synaptic ultrastructural parameters which are thought to influence the strength of transmitter release; thus, homeostatic mechanisms do not act to maintain normal-sized junction potentials by altering synaptic structure.  相似文献   

17.
Structural plasticity at crustacean neuromuscular synapses   总被引:1,自引:0,他引:1  
Crustacean motor axons innervate muscle fibers via a multiplicity of synaptic terminals which release small but variable amounts of transmitter. Differences in release performance appear to be correlated with the size of synaptic contacts and presynaptic dense bars (active zones). These structural parameters proliferate via sprouting from existing synaptic terminals and relocate to ever more distal sites during development and growth of an identified axon. Moreover, alterations in number of synaptic contacts and active zones occur in adults following stimulation or decentralization, demonstrating structural plasticity of crustacean neuromuscular synapses.  相似文献   

18.
Apart from the fact that the gradient of the velocity of the AP propagation along the nerve terminal and the intensity of secretion do exist, the kinetics of a quanta transmitter release may also be revealed in different parts of the terminal. The velocity of the propagation and the minimum sympatric delay tend to diminish along with moving away from the myelinated part of axon, whereas the synchronicity of the quanta release rises. The distinctions in the time course of secretion in different parts of the terminal were amplified when the calcium ion concentration in the medium was enhanced. The observed peculiarities of the secretion kinetics in different regions of nerve ending seem to compensate for diminishing of the amplitude of multiquantal endplate current.  相似文献   

19.
神经元突触前可塑性的结构及分子基础   总被引:1,自引:0,他引:1  
突触可塑性是神经元间信息传递的重要生理调控机制,它包括突触前可塑性和突触后可塑性.突触前可塑性是指通过对神经递质释放过程的干预、修饰,调节突触强度的过程.突触强度的变化,是通过影响量子的大小,活动区的个数和囊泡释放概率来实现的.而突触前囊泡活动尤为重要:从转运、搭靠、融合至内吞进入下一轮循环,每一步都是由一群互相作用的蛋白质共同完成的.  相似文献   

20.
The extent of quantal transmitter release from single sites of synaptic vesicle accumulations along the length of motor-nerve terminal branches at the amphibian neuromuscular junction has been investigated. Such a determination involves development of a model for the generation of quantal potential fields at single styryl-dye stained sites along the length of a branch. Successful testing and application of this model indicates that the extent of quantal release at a dye-stained site is proportional to the total length of active zone at the site. The stability of these sites and of their ensheathing terminal Schwann cell processes was also investigated. Following simultaneous injection of the terminal Schwann cell and nerve terminal with different fluorescent dyes, terminal branches were observed to show dynamic changes in their length, with these occurring in relatively short periods of hours or less. Redistribution of styryl dye stained sites at the ends of branches also occurred in such short periods of time. These were accompanied by changes in the configuration of terminal Schwann cells, which generally occurred prior to changes in the length of nerve terminal branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号