首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel thermostable chimeric β-galactosidase was constructed by fusing a poly-His tag to the N-terminal region of the β-galactosidase from Thermus sp. strain T2 to facilitate its overexpression in Escherichia coli and its purification by immobilized metal-ion affinity chromatography (IMAC). The poly-His tag fusion did not affect the activation, kinetic parameters, and stability of the β-galactosidase. Copper-iminodiacetic acid (Cu-IDA) supports enabled the most rapid adsorption of the His-tagged enzyme, favoring multisubunit interactions, but caused deleterious effects on the enzyme stability. To improve the enzyme purification a selective one-point adsorption was achieved by designing tailor-made low-activated Co-IDA or Ni-IDA supports. The new enzyme was not only useful for industrial purposes but also has become an excellent model to study the purification of large multimeric proteins via selective adsorption on tailor-made IMAC supports.  相似文献   

2.
This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads-epoxy support with other Sepabeads-epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable beta-galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads-epoxy-chelate, Sepabeads-epoxy-amino, or Sepabeads-epoxy-boronic to 5% using Sepabeads-epoxy-IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized beta-galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long-term alkaline incubation, the enzyme immobilized on Sepabeads-epoxy-boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS-PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross-linking with aldehyde-dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 degrees C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.  相似文献   

3.
M R Ahmadian  R Kreutzer  M Sprinzl 《Biochimie》1991,73(7-8):1037-1043
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.  相似文献   

4.
The nucleotide sequence of the Thermus sp. strain T2 DNA coding for a thermostable alpha-galactosidase was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 474 amino acids (M(r), 53,514). The observed homology between the deduced amino acid sequences of the enzyme and alpha-galactosidase from Thermus brockianus was over 70%. Thermus sp. strain T2 alpha-galactosidase was expressed in its active form in Escherichia coli and purified. Native polyacrylamide gel electrophoresis and gel filtration chromatography data suggest that the enzyme is octameric. The enzyme was most active at 75 degrees C for p-nitrophenyl-alpha-D-galactopyranoside hydrolysis, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C. The enzyme was extremely stable over a broad range of pH (pH 6 to 13) after treatment at 40 degrees C for 1 h. The enzyme acted on the terminal alpha-galactosyl residue, not on the side chain residue, of the galactomanno-oligosaccharides as well as those of yeasts and Mortierella vinacea alpha-galactosidase I. The enzyme has only one Cys residue in the molecule. para-Chloromercuribenzoic acid completely inhibited the enzyme but did not affect the mutant enzyme which contained Ala instead of Cys, indicating that this Cys residue is not responsible for its catalytic function.  相似文献   

5.
A recombinant plasmid, pHW1, directing the overproduction of the enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase, EC 3.6.1.23) from Escherichia coli has been constructed. A 1900-base DNA fragment carrying the structural gene for the enzyme (dut) has been recloned into a runaway replication vector that also carries the strong leftward promoter (pL) of bacteriophage lambda. Upon temperature shift, an E. coli strain carrying the new plasmid gives an increase in dUTPase activity of about 600-fold in rich medium compared to wild-type bacteria. The 64-kDa protein corresponding to the mature form of the enzyme reaches 20% of the total protein content of the bacterial cell. Using this strain, a simplified procedure has been developed for the purification of dUTPase. The purification steps consist of extraction of the cytoplasmic proteins, ammonium sulfate precipitation, anion-exchange chromatography and gel filtration on FPLC. The new overproducing plasmid and the simplified purification procedure developed will make it possible to purify dUTPase in sufficient amounts for detailed characterization studies.  相似文献   

6.
Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli BL21(DE3) was accomplished by introducing a derivative of pET-23a(+) containing a copy of the coding gene into the multicloning site. E. coli BL21(DE3)/pETMNCAT produced abundant quantities of manganese catalase as insoluble inclusion bodies. Regeneration of active catalase was achieved by denaturation in guanidine hydrochloride and subsequent dialysis in the presence of manganese ion. When the E. coli chaperone genes GroEL, GroES, DnaK, DnaJ and GrpE were coexpressed with manganese catalase, a significant fraction of the overproduced protein was partitioned into the soluble fraction. However, almost all of the soluble enzyme was isolated in a manganese-deficient apo form which could subsequently be converted into active holoenzyme by incubation with manganese ion at high temperatures. Further experiments on this apo catalase suggested that the structure of this protein was virtually identical to the active holoenzyme.  相似文献   

7.
8.
Low levels of tetracyclines found as residues in milk inhibited the biosynthesis of beta-galactosidase in Escherichia coli. To produce the same effect, other antibacterials had to occur in concentrations that were more than 10-fold higher. This relative selectivity was exploited for the development of a screening test for tetracyclines in milk based on a chemiluminometric assay of beta-galactosidase. The method was validated with spiked samples of raw milk and applied to field samples contaminated with tetracyclines.  相似文献   

9.
A recombinant plasmid which directs the overproduction in Escherichia coli of staphylokinase from Staphylococcus aureus has been constructed by placing the staphylokinase gene, sak, under the control of bacteriophage lambda PR promoter in the plasmid. When an E. coli strain having the plasmid was induced, the staphylokinase activity in the periplasmic fraction increased about 60-fold and the 15.5-kDa protein corresponding to the mature form reached about 25% of the periplasmic proteins. At the same time the 18.5-kDa protein corresponding to the precursor form was accumulated in the membrane fraction, showing that the processing and translocation of the sak gene product were restricted during high level of its synthesis. By using this strain, the mature staphylokinase has been easily purified to near homogeneity. The purification steps consisted of extraction of the periplasmic proteins by osmotic shock and CM-cellulose column chromatography. Two species of staphylokinase were identified after CM-cellulose column chromatography. Although their isoelectric points and NH2-terminal amino acid sequences were different, their specific activities were almost equal. These results strongly suggest that the NH2-terminal portion of staphylokinase is not important for its activity.  相似文献   

10.
A flow cytometric method was developed for the assay of beta-galactosidase in single Escherichia coli cells. A new fluorogenic substrate for beta-galactosidase, C(12)FDG, contains a lipophilic group that allows the substrate to penetrate through cell membranes under normal conditions. When the substrate is hydrolyzed by intracellular beta-galactosidase, a green fluorescent product is formed and retained inside the cell. Consequently, the stained beta-galactosidase-positive cells exhibit fluorescence, which is detected by flow cytometry. This new assay was used to analyze the segregational instability caused by a reduction in specific growth rate of the plasmid-bearing cells in the T7 expression system. Induction results in a substantial accumulation of intracellular beta-galactosidase along with a rapid increase in the fraction of plasmid-free cells. Once the cells lose the plasmid, they no longer produce beta-galactosidase, which is reduced by at least half every generation; thus, after staining, the fluorescent, plasmid-bearing cells can be distinguished from the nonfluorescent, plasmid-free cells using flow cytometry. This article describes the feasibility of the flow cytometric assay for single E. coli cells and reports the optimal assay conditions. A direct relationship between beta-galactosidase activity and green fluorescence intensity was found, and the fractions of recombinant cells in batch cultures were analyzed after various levels of induction.  相似文献   

11.
Illegitimate recombination that usually takes place at a low frequency is greatly enhanced by treatment with DNA-damaging agents. It is thought that DNA double-strand breaks induced by this DNA damage are important for initiation of illegitimate recombination. Here we show that illegitimate recombination is enhanced by overexpression of the DnaB protein in Escherichia coli. The recombination enhanced by DnaB overexpression occurred between short regions of homology. We propose a model for the initiation of illegitimate recombination in which DnaB overexpression may excessively unwind DNA at replication forks and induce double-strand breaks, resulting in illegitimate recombination. The defect in RecQ has a synergistic effect on the increased illegitimate recombination in cells containing the overproduced DnaB protein, implying that DnaB works in the same pathway as RecQ does but that they work at different steps.  相似文献   

12.
13.
A gene coding for human nerve growth factor (hNGF) was constructed for expression under control of the trp promoter in E. coli. The plasmid pTRSNGF contained a synthetic hNGF gene fused, in frame, to the region encoding the beta-lactamase signal peptide. The plasmid pTRLNGF contained the same coding sequence as hNGF attached downstream from the N-terminal fragment of the trp L gene. E. coli cells harboring pTRSNGF produced an amount of hNGF constituting 4% of the total cellular protein, and removed the beta-lactamase signal peptide. The mature protein hNGF was biologically active in the PC12h bioassay for neurite outgrowth. This biological activity was comparable to that of authentic mouse NGF. E. coli cells harboring pTRLNGF produced an amount of fusion protein hNGF constituting 25% of the total cellular protein. Although the fusion protein hNGF formed inclusion bodies in cells, dissolved fusion protein hNGF was active in neurite outgrowth from PC12h cells.  相似文献   

14.
15.
The genes encoding thermostable alpha- and beta-galactosidases from an extremely thermophilic bacterium, Thermus strain T2, were cloned in Escherichia coli. The alpha-galactosidase gene was located just downstream from the beta-galactosidase gene. The genes were introduced into Thermus thermophilus HB27 with the aid of Thermus cryptic plasmid pTT8, and beta-galactosidases were expressed constitutively.  相似文献   

16.
17.
Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. MIS38 (PML) revealed that PML is a member of the lipase family I.3 and is composed of 617 amino acid residues with a calculated molecular weight of 64510. Recombinant PML (rPML) was overproduced in Escherichia coli in an insoluble form, solubilized in the presence of 8 M urea, purified in a urea-denatured form and refolded by removing urea in the presence of the Ca(2+) ion. Gel filtration chromatography suggests that this refolded protein is monomeric. rPML showed relatively broad substrate specificities and hydrolyzed glyceryl tributyrate and olive oil with comparable efficiencies. rPML was active only in the form of a holo-enzyme, in which at least 12 Ca(2+) ions bound. These Ca(2+) ions bound too tightly to be removed from the protein upon dialysis, but were removed from it upon EDTA treatment. The resultant apo-enzyme was fully active in the presence of 10 mM CaCl(2), but was inactive in the absence of the Ca(2+) ion. PML has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The mutation of Ser(207) within this motif to Ala completely inactivated PML, suggesting that Ser(207) is the active-site serine of PML.  相似文献   

18.
19.
20.
The HSP90 gene of the yeast Saccharomyces cerevisiae encodes a heat shock-inducible protein with an Mr of 90,000 (hsp90) and unknown function. We fused DNA fragments of a known sequence (namely, either end of a 1.4-kilobase EcoRI fragment which contains the S. cerevisiae TRP1 gene) to an EcoRI site within the coding sequence of the HSP90 gene. When these fusions are introduced into S. cerevisiae they direct the synthesis of unique truncated hsp90 proteins. By determining the size and charge of these proteins we were able to deduce the translational reading frame at the (EcoRI) fusion site. This information allowed us to design and construct a well-defined in-frame fusion between the S. cerevisiae HSP90 gene and the Escherichia coli lacZ gene. When this fused gene is introduced into S. cerevisiae on a multicopy plasmid vector, it directs the heat shock-inducible synthesis of a fused protein, which is an enzymatically active beta-galactosidase. Thus, for the first time, it is possible to quantitate the heat shock response in a eucaryotic organism with a simple enzyme assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号