首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to characterize the phosphorylation of bovine cardiac troponin by cyclic AMP-dependent protein kinase. The purified troponin-tropomyosin complex from beef heart contained 0.78 +/- 0.15 mol of phosphate per mol of protein. Analysis of the isolated protein components indicated that the endogenous phosphate was predominately in the inhibitory subunit (TN-I) and the tropomyosin-binding subunit (TN-T) of troponin. When cardiac troponin or the troponin-tropomyosin complex was incubated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP, the rate of phosphorylation was stimulated by cyclic AMP and inhibited by the heat-stable protein inhibitor of cyclic AMP-dependent protein kinase. The 32P was incorporated specifically into the TN-I subunit with a maximal incorporation of 1 mol of phosphate per mol of protein. The maximal amount of phosphate incorporated did not vary significantly between troponin preparations that contained low or high amounts of endogenous phosphate. The Vmax of the initial rates of phosphorylation with troponin or troponin-tropomyosin as substrates was 3.5-fold greater than the value obtained with unfractionated histones. The rate or extent of phosphorylation was not altered by actin in the presence or absence of Ca2+. The maximal rate of phosphorylation occurred between pH 8.5 and 9.0. At pH 6.0 and 7.0 the maximal rates of phosphorylation were 13 and 45% of that observed at pH 8.5, respectively. These results indicate that cyclic AMP formation in cardiac muscle may be associated with the rapid and specific phosphorylation of the TN-I subunit of troponin. The presence of endogenous phosphate in TN-T and TN-I suggests that kinases other than cyclic AMP-dependent protein kinase may also phosphorylate troponin in vivo.  相似文献   

2.
Cyclic AMP- and cGMP-dependent protein kinases catalyze the phosphorylation of cardiac troponin inhibitory subunit (TN-I). Unlike many substrates utilized by both kinases, TN-I is rapidly phosphorylated using relatively low concentrations of the cGMP-dependent protein kinase (0.01 to 0.1 micrometer). At low concentrations of cAMP- and cGMP-dependent protein kinases, approximately twice as much total phosphate is incorporated into TN-I using the cAMP-dependent enzyme. At higher enzyme concentrations, 1 mol of phosphate/mol of TN-I is found using either enzyme. Maximal levels of cAMP- and CGMP-dependent protein kinases do not catalyze additive phosphorylation, suggesting that the two enzymes catalyze the phosphorylation of the same site on TN-I. The results support the concept of overlapping substrate specificity for cAMP- and cGMP-dependent protein kinases, but suggest that cardiac troponin contains additional specificity determinants for the cGMP-dependent protein kinase not found in several other protein substrates.  相似文献   

3.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

4.
Incorporation of 32P from [γ-32P]ATP into a homogeneous preparation of rat hepatic 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase was catalyzed by a homogeneous preparation of the catalytic subunit of the cyclic AMP dependent protein kinase from rat liver. Approximately 2 mol of phosphate were incorporated per mol of the dimeric enzyme and this was associated with inhibition of the phosphotransferase activity and activation of the phosphohydrolase activity. Acid hydrolysis of the enzyme that was phosphorylated in,vitro revealed that only seryl residues were labeled. Fructose 2,6-bisphosphate inhibited the initial rate of phosphorylation of the enzyme. It is concluded that both activities of this bifunctional enzyme are regulated in a reciprocal manner by cyclic AMP-dependent phosphorylation and that this phosphorylation can be modulated by fructose 2,6-bisphosphate.  相似文献   

5.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

6.
Insulin exerts two types of effects on protein phosphorylation in adipocytes. First, insulin stimulates phosphorylation of a 123,000 dalton peptide (ATP citrate lyase); second, insulin inhibits the epinephrine-stimulated phosphorylation of a 69,000 dalton peptide.Propranolol, nicotinic acid and concanavalin A, agents which, like insulin, inhibit epinephrine-stimulated cAMP accumulation, also inhibit epinephrine-stimulated phosphorylation of the 69,000 dalton peptide. These agents do not, however, stimulate the phosphorylation of the 123,000 dalton peptide. Carbamylcholine and a variety of cyclic nucleotides (other than cyclic AMP and dibutyryl cAMP) do not alter protein phosphorylation in intact adipocytes. Finally, under conditions wherein insulin fails to inhibit dibutyryl cAMP-stimulated phosphorylation of the 69,000 dalton peptide, insulin-stimulated phosphorylation persists.Thus, while insulin inhibition of epinephrine-stimulated phosphorylation may be mediated by insulin-induced alterations in cAMP accumulation or action, insulin-stimulated phosphorylation is not due to alterations in cyclic nucleotide accumulation or action.  相似文献   

7.
Human liver pyruvate kinase is rapidly (within 2 min) inactivated by incubation of a human liver supernatant with cyclic AMP, when measured at suboptimal substrate concentrations. Half-maximal inactivation is reached with 0.04 μM cyclic AMP. The apparent K0.5 for phosphoenolpyruvate shifts from 0.5 mM to 1.1 mM by incubation with cyclic AMP. It is concluded that cyclic AMP-dependent protein kinase may catalyze the phosphorylation of human liver pyruvate kinase in vivo.  相似文献   

8.
Glycogen synthase has been purified from bovine heart to near homogeneity by a procedure including zonal sucrose gradient ultracentrifugation. The purified enzyme had a subunit molecular weight of 88,000 ± 2000, an ID ratio of between 0.8 and 1.0, and contained less than 0.1 mol of covalently bound phosphate per mole of subunit. The rates, extent, and sites of phosphorylation of the cardiac enzyme were compared with those of skeletal muscle glycogen synthase as catalyzed by both the cardiac cAMP-dependent and a cardiac cAMP-independent protein kinases. The cardiac glycogen synthase was phosphorylated up to 1 mol of phosphate/mol of subunit by the cAMP-dependent protein kinase, to at least 2 mol of phosphate/mol of subunit by the cAMP-independent protein kinase, and to at least 3 mol of phosphate/mol of subunit with the two protein kinases together. There was a linear correlation between the extent of phosphorylation and conversion of cardiac synthase I to the glucose 6-phosphate-dependent form. This correlation was independent of which kinase(s) catalyzed the phosphorylation. Maximum inactivation occurred at an incorporation of 2 mol of phosphate per subunit. Under equivalent conditions, the rates of phosphorylation of cardiac and skeletal muscle glycogen synthase by the cAMP-dependent protein kinase were identical. In contrast, the cardiac enzyme was phosphorylated at a faster rate by the homologous cardiac cAMP-independent protein kinase than was the skeletal muscle synthase by the latter cardiac protein kinase. Analysis of the sites of phosphorylation of the cardiac and skeletal muscle glycogen synthases by CNBr cleavage and trypsin hydrolysis indicated minor differences in the derived phosphopeptides.  相似文献   

9.
The effect of histamine, 1,4-methylhistamine and ethanol on cyclic AMP levels and protein kinase activation was measured in tissue strips from the fundic region of guinea pig gastric mucosa. Histamine induced a significant elevation of tissue cyclic AMP levels and also in situ activation of the protein kinase. 1,4-methylhistamine, an inactive analog of histamine, and ethanol had no effect on these two parameters. Results suggest that protein kinase activation is involved in the cyclic AMP-mediated action of histamine on the gastric fundic mucosa.  相似文献   

10.
Cyclic GMP-dependent protein kinase from bovine lung and cyclic AMP-dependent protein kinase from bovine heart are inactivated by Nα-tosyl-L-lysine chloromethylketone (TLCK) in the presence of cyclic GMP and cyclic AMP, respectively. The inactivation of both protein kinases is pseudo-first order, suggesting the rate limiting step is beyond the binding of TLCK. Cyclic GMP-dependent protein kinase is inactivated less than 14 as rapidly as cyclic AMP-dependent protein kinase, although it shows a higher apparent affinity for TLCK. Cyclic AMP stimulated the rate of inactivation of cyclic AMP-dependent protein kinase 10-fold but cyclic GMP stimulated the rate of inactivation of cyclic GMP-dependent protein kinase only 1.5-fold. The rate of inactivation of cyclic GMP-dependent protein kinase by TLCK is sufficiently rapid (half-time of about 30 min at 37°C with 2 mM TLCK) to account for the effects of TLCK on cell growth observed by others.  相似文献   

11.
Treatment of Chinese hamster ovary cells with dibutyryl cyclic AMP, which results in a net increase of the intracellular cyclic AMP level, converts the epithelial-like cells to a fibroblast-like shape. Protein kinase activity in cells treated with 1 mM dibutyryl cyclic AMP show a 3-fold increase in Vmax but no appreciable changes in the apparent Km for ATP. When cells are treated with dibutyryl cyclic AMP, there is a time-dependent conversion of cyclic AMP-stimulable protein kinase to cyclic AMP-independent catalytic subunits, as demonstrated by Sephadex G-100 gel filtration. These experiments demonstrate the activation of the cyclic AMP-dependent protein kinase in vivo. This activation may lead to phosphorylation of certain cellular constituent(s) and thus may be involved in the observed morphological transformation.  相似文献   

12.
The biochemical properties of several alkyl phosphotriesters of cyclic AMP were studied with respect to their interactions with beef heart protein kinase and cyclic nucleotide phosphodiesterase. Ethyl and propyl triesters did not enhance the phosphorylation of histone by protein kinase and methyl, ethyl, propyl and butyl triesters were poor competitors for the cyclic AMP binding site of the enzyme. However, these alkyl phosphotriesters were effective inhibitors of cyclic nucleotide phosphodiesterase with the Ki's arrayed in the following order: methyl > ethyl > propyl > butyl > cetyl triester. Metabolic studies with mice indicated that intraperitoneal injection of low doses of propyl triester for one week significantly increased cyclic AMP concentration.  相似文献   

13.
C3H mouse mammary carcinoma contains cyclic AMP-independent (C) and dependent (RC) protein kinases and a specific cyclic AMP-binding protein (R). The specific activities of C, RC and R are markedly lower in carcinoma than the normal mammary cells. Protein kinase preparation from neoplastic cells showed markedly higher ration of CRC and lower responsiveness to cyclic AMP for the activation of the enzyme than the normal cells.  相似文献   

14.
The addition of glucagon (10?6 M) to an incubation mixture containing 32Pi and hepatocytes isolated from livers of rats fed ad libitum results in both a 3-fold increased incorporation of 32P into L-type pyruvate kinase and a decreased catalytic activity. The 32P incorporated into pyruvate kinase was covalently bound to the enzyme as evidenced by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In addition, exogenous cyclic AMP (10?3 M) stimulated the phosphorylation and the suppression of catalytic activity to a similar extent. On the other hand, insulin (10?7 M) had essentially no effect on the incorporation of 32P into pyruvate kinase or on its catalytic activity under the conditions used in this study. These results suggest that phosphorylation of pyruvate kinase invivo is stimulated by glucagon via cyclic AMP and cyclic AMP-dependent protein kinase and that the activity of the enzyme is, at least in part, regulated by a phosphorylation-dephosphorylation mechanism.  相似文献   

15.
Protein phosphorylation was investigated in [32P]-labeled cardiomyocytes isolated from adult rat heart ventricles. The -adrenergic stimulation (by isoproterenol, ISO) increased the phosphorylation of inhibitory subunit of troponin (TN-I), C-protein and phospholamban (PLN). Such stimulation was largely mediated by increased adenylyl cyclase (AC) activity, increased myoplasmic cyclic AMP and increased cyclic AMP dependent protein kinase (A-kinase)-catalyzed phosphorylation of these proteins in view of the following observations: (a) dibutyryl-and bromo-derivatives of cyclic AMP mimicked the stimulatory effect of ISO on protein phosphorylation while (b) Rp-cyclic AMP was found to attenuate ISO-dependent stimulation. Unexpectedly, 8-bromo cyclic GMP was found to markedly increase TN-I and PLN phosphorylation. Both 1- and 2-adrenoceptors were present and ISO binding to either receptor was found to stimulate myocyte AC. However, the stimulation of the 2-AR only marginally increased while the stimulation of 1-AR markedly increased PLN phosphorylation. Other stimuli that increase tissue cyclic AMP levels also increased PLN and TN-I phosphorylation and these included isobutylmethylxanthine (non-specific phosphodiesterase inhibitor), milrinone (inhibits cardiotonic inhibitable phosphodiesterase, sometimes called type III or IV) and forskolin (which directly stimulates adenylyl cyclase). Cholinergic agonists acting on cardiomyocyte M2-muscarinic receptors that are coupled to AC via pertussis toxin(PT)-sensitive G proteins inhibited AC and attenuated ISO-dependent increases in PLN and TN-I phosphorylation. Thein vivo PT treatment, which ADP-ribosylated Gi-like protein(s) in the myocytes, markedly attenuated muscarinic inhibitory effect on PLN and TN-I phosphorylation on one hand and, increased the -adrenergic stimulation, on the other. Controlled exposure of isolated myocytes to N-ethyl maleimide, also led to the findings similar to those seen following the PT treatment. Exposure of myocytes to phorbol, 12-myristate, 13-acetate (PMA) increased the protein phosphorylation, augmenting the stimulation by ISO, and such augmentation was antagonized by propranolol suggesting modulation of the -adrenoceptor coupled AC pathway by PMA. Okadaic acid (OA) exposure of myocytes also increased protein phosphorylation with the results supporting the roles for type 1 and 2A protein phosphatases in the dephosphorylation of PLN and TN-I. Interestingly OA treatment attenuated the muscarinic inhibitory effect which was restored by subsequent brief exposure of myocytes to PMA. While the stimulation of alpha adrenoceptors exerted little effect on the phosphorylation of PLN and TN-I, inactivation of alpha adrenoceptors by chloroethylclonidine (CEC), augmented -adrenergically stimulated phosphorylation. KCl-dependent depolarization of myocytes was observed to potentiate ISO-dependent increase in phosphorylation (incubation period 15 sec to 1 min) as well as to accelerate the time-dependent decline in this phosphorylation seen upon longer incubation. Verapamil decreased ISO-stimulated protein phosphorylation in the depolarized myocytes. Depolarization was found to have little effect on the muscarinic inhibitory action on phosphorylation. Prior treatment of myocytes with PMA, was found to augment ISO-stimulated protein phosphorylation in the depolarized myocytes. Such augmented increases were completely blocked by propranolol. Forskolin also stimulated PLN and TN-I phosphorylation. Prior exposure of myocytes to forskolin followed by incubation in the depolarized and polarized media showed that PLN was dephosphorylated more rapidly in the depolarized myocytes. The results support the view that both cyclic AMP and calcium signals cooperatively increase the rates of phosphorylation of TN-I and PLN in the depolarized cardiomyocytes during -adrenergic stimulation. The results raise the additional possibility that the calcium signal may regulate the dephosphorylation of PLN in the depolarized cell. While muscarinic attenuation of -adrenergic action on protein phosphorylation was mediated, in part, by decreased AC activity, and muscarinic inhibition of AC and protein phosphorylation was not detectably influenced by the depolarization, the evidence was seen that muscarinic stimulation of dephosphorylation mechanisms are intimately involved. The postulate that the simultaneous stimulation of 1-adrenoceptors inhibits -adrenergic stimulation of PLN and TN-I phosphorylation is supported.  相似文献   

16.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

17.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

18.
The effect of phosphorylation by cyclic AMP dependent protein kinase on the assembly of the core-forming 68 KDa neurofilament subunit protein (NF-L) was studied in vitro by fluorescence energy transfer and electron microscopy. Phosphorylation of unassembled NF-L in a low ionic strength buffer by cyclic AMP dependent protein kinase led to the incorporation of 1-2 phosphate groups/mole protein. Assembly of this phosphorylated NF-L was inhibited significantly; compared to non-phosphorylated NF-L, the critical concentration of phosphorylated NF-L was raised by greater than 30-fold. Assembled NF-L filaments could also be phosphorylated by cyclic AMP dependent protein kinase indicating that the sites were accessible. Phosphorylation of NF-L in the filamentous state induced their disassembly. The results suggest that phosphorylation by cyclic AMP dependent protein kinase is a possible means to modulate the assembly state of NF-L.  相似文献   

19.
The present results show that the catalytic subunit of cyclic AMP-dependent protein kinase phosphorylates the 50 kDa protein of rat liver phospholipid methyltransferase at one single site on a serine residue. Phosphorylation of this site is stimulated 2- to 3-fold by S-adenosylmethionine. S-adenosylmethionine-dependent protein phosphorylation is time- and dose-dependent and occurs at physiological concentrations. S-adenosylhomocysteine has no effect on protein phosphorylation but inhibits S-adenosylmethionine-dependent protein phosphorylation. S-AdenosylmethionineS-adenosylhomocysteine ratios varying from 0 to 5 produce a dose-dependent stimulation of the phosphorylation of the 50 kDa protein. In conclusion, these results show, for the first time, that the ratio S-adenosylmethionineS-adenosylhomocysteine can modulate phosphorylation of a specific protein.  相似文献   

20.
The effect of ethanol on histamine release from lungs of sensitized guinea pigs was studied in conjunction with measurements of tissue concentrations of cyclic AMP and cyclic GMP. Addition of antigen in vitro elicited a rapid increase in cyclic AMP and cyclic GMP and stimulated release of histamine. Ethanol (2%) inhibited antigen-induced release of histamine over 95% and completely inhibited the increase in both cyclic nucleotides. The activity of cyclic AMP-dependent protein kinase was only slightly affected by ethanol.Metiamide blocked the ovalbumin stimulated increase in cyclic AMP but not cyclic GMP. Pyrilamine did not prevent the rise in either cyclic nucleotide. This suggests that the antigen-induced rise in cyclic AMP is an indirect result of histamine released from the tissue. The inability of H1 and H2 receptor antagonists to affect antigen-induced elevation of cyclic GMP in sensitized lung fragments suggests that an elevation in cyclic GMP might be either a primary event in the mediator release sequence or secondary to the release of a mediator other than histamine. The ability of ethanol to inhibit mediator release might be due to its capacity to attenuate the antigen-induced elevation of cyclic GMP in sensitized lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号