首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Intralipid is a suitable substrate for measuring lipoprotein lipase activity in the presence of other triacylglycerol lipases in heart and myocytes. 2. Triacylglycerol lipase activity in heart and myocytes was increased 10-fold in the presence of serum at pH 7.4 and 8.1. The serum-stimulated activity in myocytes was 95% inhibited by saturating concentrations of antiserum to lipoprotein lipase. 3. Both heparin-releasable and non-releasable lipoprotein lipase fractions had similar Km values for Intralipid and a similar pattern of inhibition by high density lipoprotein but different responses to heparin. 4. Isoproterenol did not alter lipoprotein lipase activity in cardiac myocytes.  相似文献   

2.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

3.
Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis.  相似文献   

4.
Cultured Chinese-hamster ovary cells (CHO cells) were found to produce and secrete a lipase, which was identified as a lipoprotein lipase by the following criteria. Its activity was stimulated by serum and apolipoprotein CII, and was inhibited by high salt concentration. The lipase bound to heparin-agarose and co-eluted with 125I-labelled bovine lipoprotein lipase in a salt gradient. A chicken antiserum to bovine lipoprotein lipase inhibited the activity and precipitated a labelled protein of the same apparent size as bovine lipoprotein lipase from media of CHO cells labelled with [35S]methionine. The lipase activity and secretion were similar in growing cells and in cells that had reached confluency. Hence, lipoprotein lipase appears to be expressed constitutively in CHO cells and is not linked to certain growth conditions, as in pre-adipocyte and macrophage cell lines. At 37 degrees C, but not at 4 degrees C, heparin increased the release of lipase to the medium 2-4-fold. This increased release occurred without depletion of cell-associated lipase activity, suggesting that heparin enhanced release of newly synthesized lipase.  相似文献   

5.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

6.
Combined lipase deficiency, cld, is a recessive mutation within the T/t complex of mouse chromosome 17. Mice homozygous for this defect display severe functional deficiencies of lipoprotein lipase and the related hepatic lipase. They develop massive hyperchylomicronemia and die within 3 days when allowed to suckle. Heart, diaphragm muscle, and brown adipose tissue of 1-day-old cld/cld and unaffected mice incorporated in vivo [35S]methionine into a protein that could be immunoprecipitated by antilipoprotein lipase serum. The immunoprecipitated protein in all tissues had the same Mr as bovine lipoprotein lipase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proportion of radioactivity in the lipoprotein lipase band to that in total protein was 0.02% in tissues of cld/cld mice and 0.01% in tissues of unaffected mice. There was 2-6 times more lipoprotein lipase-like protein (determined by immunoassay) in tissues of defective mice than in those of unaffected mice. These findings indicate that the cld mutation did not cause deletion of the structural gene for lipoprotein lipase. Lipoprotein lipase activity in heart, diaphragm muscle, brown adipose tissue, and lung of cld/cld mice was less than 5% of that in tissues of unaffected mice. This low activity could be inhibited more than 85% by antilipoprotein lipase serum, but not by nonimmune serum. It is concluded that tissues in cld/cld mice synthesize a lipoprotein lipase-like protein which has subnormal catalytic activity.  相似文献   

7.
Copper deficiency results in alterations in lipid metabolism that include elevations in serum cholesterol and triglycerides and a decrease in whole-body respiratory quotient. Copper-deficient animals are also leaner even though electron micrographs of the myocardium present increased lipid droplet accumulation. To address whether a compromised copper status impacts triglyceride deposition in a tissue-specific manner, the activity of lipoprotein lipase was measured in adipose tissue and cardiac and skeletal muscle. Weanling rats fed a copper-restricted diet (<1 ppm) for 6 wk demonstrated a greater than twofold increase in cardiac lipoprotein lipase activity concomitant with a significant reduction in adipose tissue lipoprotein lipase activity. Skeletal muscle lipoprotein lipase activity was not altered by the copper-deficient state. The results of this study suggest that copper deficiency may induce a tissue-specific alteration in lipoprotein lipase activity in rats, which may contribute to the notable deposition of lipid substance in myocardium and the concomitant general body leanness.  相似文献   

8.
Lipase activity extracted from cultured neonatal rat heart cells was characterized and identified as lipoprotein lipase. Enzyme activity was stimulated by human apoC-II and rat serum; serum stimulation was prevented by human apoC-I and by apoC-II. Lipolysis was maximal at pH 8.0 and was inhibited by protamine sulfate, NaCl, and high concentrations of heparin. About 50% of heart cell lipase activity applied to heparin-Sepharose bound to the gel and was eluted with a NaCl gradient. A peak of lipase activity was observed at 0.84 M NaCl. Neonatal rat heart cells in culture are a mixture of muscle and non-muscle cells. To determine the cellular location of the lipoprotein lipase, enzyme activity and muscle cell content of the cultures were determined. Myosin ATPase was used as an index of muscle cell content since ATPase specific activity correlated (r = +0.97) with muscle cell content determined immunofluorescently. When muscle cell content of cultures was decreased or increased by differential plating, lipase specific activity was constant. Moreover, lipase specific activity was constant during culture growth despite a decrease in muscle cell content. It was concluded that lipoprotein lipase activity of cultured heart cells is not associated solely with either muscle or non-muslce cells.  相似文献   

9.
The lipoprotein lipase (clearing-factor lipase) activity of the white adipose tissue from rats aged between 1 and 145 days was determined. Five adipose-tissue sites (epididymal, uterine, subcutaneous, perirenal and intramuscular) together with serum concentrations of triacylglycerol, cholesterol and glucose were studied. The pattern of enzyme-activity change was remarkably similar in all the sites studied, although the growth of the tissues proceeded non-uniformly. After a peak of activity early in suckling, lipoprotein lipase activity fell to low values by 20 days of age. At weaning (21 days) the activity increased sharply and within 5 days high values were regained. The serum triacylglycerol and cholesterol concentrations were low at birth and reached peaks of concentration coincidentally with the minima of white-adipose-tissue lipoprotein lipase activities, seen late in suckling. The changes in enzyme activity were related to other metabolic changes in adipose tissue and with the known changes in plasma insulin concentrations occurring during development.  相似文献   

10.
Within the first day in culture, human monocytes begin to synthesize and secrete a triglyceride lipase. The designation of this activity as lipoprotein lipase is based upon: 1) a requirement of serum or apolipoprotein C-II for full activity; 2) inhibition by 1M NaCl or apolipoprotein C-III2; 3) a pH optimum of 8; and 4) binding to endothelial cells that is releasable by heparin. The enzyme also exhibits immunological cross reactivity with antibody to purified bovine milk lipoprotein lipase as does human postheparin plasma lipoprotein lipase. Lymphocytes and polymorphonuclear leukocytes do not appear to contain this enzyme.  相似文献   

11.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

12.
In contrast to plasma from most other animals, guinea pig plasma causes little or no stimulation of lipoprotein lipase activity. Very low density lipoproteins (VLDL) isolated by ultracentrifugation of guinea pig serum caused a definite stimulation of lipase activity, whereas the infranatant inhibited the activity. Gel filtration in 5 M guanidinium hydrochloride of delipidated VLDL demonstrated that the activation was caused by a low molecular weight protein. The VLDL themselves were hydrolized at similar rates as human VLDL both by guinea pig and by bovine lipoprotein lipases. Thus, guinea pig VLDL contain an activator for lipoprotein lipase analogous to that in other animals and there is enough of the activator to support rapid hydrolysis of the VLDL lipids by the lipase.  相似文献   

13.
The utilization of exogenous triacylglycerol by fusing and non-fusing rat L6 myoblasts grown in culture was investigated. Although small quantities of triacylglycerol were accumulated by both cell lines during an incubation of 2 h, no evidence could be found for the presence of lipoprotein lipase, either in the cells or released into the medium. Cell homogenate studies confirmed the absence of lipoprotein lipase but revealed the presence of an acid lipase having a pH optimum at 4.6. Acid lipase activity was mainly associated with a 15 000 g pellet and was capable of hydrolysing triolein at maximum velocity in the millimolar range. Unlike lipoprotein lipase, acid lipase was strongly inhibited by serum and preliminary investigations suggest that the inhibitory component of serum is located amongst the higher density lipoproteins. It is likely that the acid lipase is of lysosomal origin and is responsible for the hydrolysis of internalized triacylglycerol for subsequent utilization by the cell.  相似文献   

14.
Studies of lipoprotein lipase during the adipose conversion of 3T3 cells.   总被引:19,自引:0,他引:19  
L S Wise  H Green 《Cell》1978,13(2):233-242
Lipoprotein lipase activity is negligible in exponentially growing 3T3-L1 cells and 3T3-F442A cells, but develops in both lines when they reach a confluent state and undergo adipose conversion. 3T3-C2 cells, which undergo adipose conversion with extremely low frequency, do not develop the enzyme. The lipase activity of 3T3-L1 and 3T3-F442A is greatly enhanced by insulin and increases 80–180 fold during the adipose conversion. The lipase has the following characteristics in common with lipoprotein lipase from adipose and other tissues: it is dependent upon serum, is inhibited by 0.5–1.0 M sodium chloride, is recovered from acetone powders, has an alkaline pH optimum and is released from the cells by heparin. Like the lipoprotein lipase of tissue adipose cells, the enzyme of 3T3-L1 decays in the presence of cycloheximide with a half-time of about 25 min at 37°C.The ability of 3T3-F442A and 3T3-L1 to take up triglyceride from the medium depends almost completely upon lipoprotein lipase. They incorporate the fatty acids of a large fraction of a triglyceride emulsion added to the medium, and this utilization is stimulated by heparin. Very little of the glycerol portion of the triglyceride is incorporated. 3T3-C2, which lacks lipoprotein lipase, utilizes very little of either the fatty acid or the glycerol portion of triglyceride.The relevance of external lipid or lipoprotein to both the adipose conversion and the appearance of lipoprotein lipase was tested using confluent cultures in medium depleted of these components. In the presence of serum whose lipoproteins have been removed by flotation, lines 3T3-F442A and 3T3-L1 undergo adipose conversion as completely as in the presence of untreated serum, and lipoprotein lipase activity appears at essentially the same rate. In medium whose serum supplement has been extracted with acetone:ethanol, 3T3-F442A cells undergo adipose conversion to nearly the same extent as in untreated serum, and develop nearly the same increase in lipoprotein lipase activity.Unless even very low concentrations of lipids or lipoprotein are saturating it can be concluded that the adipose conversion does not depend upon external lipids or lipoproteins for its induction; rather the differentiation program is built into the cell type and comes into operation when growth is arrested even in their absence. The source of fatty acids utilized for triglyceride synthesis, however, may be affected by the amount of lipid provided to the cells.  相似文献   

15.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

16.
W S Thayer 《Life sciences》1985,36(7):635-641
Rats treated chronically with the anticancer agent adriamycin (1.5 mg/kg/week X 14 weeks) exhibited cardiac and renal lesions typical of anthracycline toxicity, and had serum hyperlipidemia characterized by 4 to 10 fold elevations in all lipoprotein classes. Heparin-releasable lipoprotein lipase activity measured in perfused heart preparations was decreased 69% in adriamycin-treated rats compared to saline-treated controls. Residual (non-heparin-releasable) activity was not significantly different after adriamycin treatment. The decrease in functional cardiac lipoprotein lipase may account, at least in part, for the serum hyperlipidemia observed in adriamycin-treated rats, and might play a role in the development of heart muscle disease.  相似文献   

17.
This study aimed to examine the possibility that ethanol-induced rise of serum triglyceride concentration in man is partly due to an impaired removal of triglycerides from the circulation. Acute ethanol loads given to normal human subjects after an overnight fast reduced the postheparin plasma lipoprotein lipase activity by an average of 25% but did not influence the postheparin plasma hepatic lipase activity or fractional removal of Intralipid triglyceride. When alcolhol was administered to fed subjects in the evening the postheparin plasma hepatic lipase was significantly decreased in the next morning as compared to corresponding control value but the lipoprotein lipase and Intralipid clearance were not changed. It is concluded that the slight decrease of lipoprotein lipase during alcohol intoxication may contribute to the hyperlipemic effect of ethanol.  相似文献   

18.
1. Lipoprotein lipase was purified from pig myocardium by a two-step purification procedure involving (a) the formation of an enzyme-substrate complex and (b) affinity chromatography on Sepharose which contained covalently linked heparin. The purified enzyme gave in sodium dodecyl sulphate-polyacrylamide-gel electrophoresis one main band with an apparent molecular weight of 73 000. The enzyme, which was purified 70 000-fold, had a specific activity of 860 mumol of unesterified fatty acid liberated/h per mg of protein. 2. The purified enzyme hydrolysed [14C]triolein emulsions in the absence of added cofactors but its activity was increased fivefold by adding normal human serum. Of the low-density lipoprotein apoproteins only apolipoprotein CII could be substituted for serum in activating the enzyme. This lipase had maximum activity at 0.05-0.15 M-NaCl. Heparin increased the activity of the purified enzyme twofold at low concentrations, but high concentrations inhibited. The triglyceride lipase of pig myocardium thus resembles lipoprotein lipase purified from adipose tissue and from plasma, but is clearly different from pig hepatic triglyceride lipase.  相似文献   

19.
This study was conducted to determine serum lipid levels and the activity of lipoprotein lipase in epididymal white adipose tissue of rats undergoing exercise training. During the 8-week period of treatment, one group of rats was kept sedentary and the remaining animals were exercise trained either continually (1 h of daily treadmill running) or intermittently (alternate weeks of daily running and inactivity). Exercise training, either continual or intermittent, decreased postprandial serum total and high-density lipoprotein cholesterol concentrations, which returned to sedentary levels in the intermittently trained animals following a week of rest. Lipoprotein lipase activity in whole epididymal adipose pad was lower in rats trained continually than in the sedentary group at the end of the treatment. The intermittent training program elicited large fluctuations in both the specific (per milligram of protein) and total (per tissue) activity of lipoprotein lipase in white adipose tissue. During rest periods, enzyme activity rose to levels that were higher than those of sedentary rats, whereas lipase activity was below that of sedentary animals following a week of running. In the last exercise--rest cycle, body weight gain of the intermittently trained rats was nearly abolished during the week of running, but it increased above that of sedentary animals during weeks of rest. The present results suggest that the modulation of lipoprotein lipase activity in white adipose tissue is one of the adaptations that take place to accommodate the fluctuations in the rate of energy deposition that occur in the rat during an intermittent training program.  相似文献   

20.
Triacylglycerol (TG) lipase activity, with an alkaline pH optimum, has been identified in the cellular fraction of L8 myotube cultures. This TG lipase activity was stimulated by serum and inhibited by NaCl and protamine sulfate. These characteristics have been classically described for lipoprotein lipase. It was possible to increase the activity of this TG lipase three- to five-fold by incubating the cells with dibutyryl cAMP. Maximal enzyme activity was observed 16 h following the addition of 10-100 microM dibutyryl cAMP to the cultured cells. Enzyme activity returned to control levels 24 h after removal of the nucleotide from the culture medium. Serum-sensitive alkaline TG lipase activity was also identified in five other myotube preparations of cultured muscle cells. The highest levels of activity were found in rat skeletal muscle primary, H9, and L6 cell types. The finding that dibutyryl cAMP is an effective inducer of alkaline TG lipase activity provides us with a valuable model to investigate mechanisms regulating synthesis, compartmentalization, and transport of lipoprotein lipase in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号