首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty human EDTA plasma samples from male and female subjects ranging in age from 24 to 74 years were collected on ice, processed ice cold and stored frozen at ?80 °C, in liquid nitrogen (LN2), or freeze dried and stored at room temperature in a desiccator (FDRT) or freeze dried and stored at ?20 °C for 1 year (FD-20). In a separate experiment, EDTA plasma samples were collected onto ice, processed ice cold and maintained on ice ± protease inhibitors versus incubated at room temperature for up to 96 h. Random and independent sampling by liquid chromatography and tandem mass spectrometry (LC–ESI–MS/MS), as correlated by the MASCOT, OMSSA, X!TANDEM and SEQUEST algorithms, showed that tryptic peptides from complement component 4B (C4B) were rapidly released in plasma at room temperature. Random sampling by LC–ESI–MS/MS showed that peptides from C4B were undetectable on ice, but peptides were cleaved from the mature C4B protein including NGFKSHALQLNNR within as little as 1 h at room temperature. The frequency and intensity of precursors within ± 3 m/z of the C4B peptide NGFKSHALQLNNR was confirmed by automated targeted analysis where the precursors from MS/MS spectra that correlated to the target sequence were analyzed in SQL/R. The C4B preproprotein was processed at the N terminus to release the mature chain that was cleaved on the carboxyl side of the isoprene C2 domain within a polar C terminal sequence of the mature C4B protein, to reveal the thioester reaction site, consistent with LC–ESI–MS/MS and Western blot. Random sampling showed that proteolytic peptides from complement component C4B were rarely observed with long term storage at ? 80 °C in a freezer or in liquid nitrogen (LN2), freeze drying with storage at ? 20 °C (FD-20 °C) or freeze drying and storage at room temperature (FDRT). Plasma samples maintained at room temperature (RT) showed at least 10-fold to 100-fold greater frequency of peptide correlation to C4B and measured peptide intensity compared to samples on ice for up to 72 h or stored at ? 80 °C, LN2, FDRT or FD-20 °C for up to a year.  相似文献   

2.
3.
The effects of storage conditions, temperature, and time on the ability of the rat thoracic aorta to produce a platelet aggregation inhibitor were investigated. Aortic fragments were incubated in Tris buffer, aliquots of which were then tested for their ability to inhibit ADP-induced human platelet aggregation. The incubation fluid of samples that had been soaked in Tris buffer at 4°C for 24 hours contained no inhibitor activity, whereas the incubation fluid of similar samples that had been kept at 4°C but not soaked in buffer contained comparable inhibitor activity as that of fresh samples. The incubation fluid of samples that had been kept at ?20°C or ?80°C contained greater inhibitor activity than that of fresh samples, and was maintained in ?20°C samples for 7 days, and ?80° samples for 28 days. The aortic inhibitor had similar properties as PGI2.  相似文献   

4.

Background

In recent years, differential analysis of proteins from human saliva, i.e., proteomic analysis, has received much attention mainly due to its unstressful sampling and its great potential for biomarker research. It is widely considered that saliva is a highly stable medium for proteins thanks to a large amount of antiprotease agents, even at ambient and physiological temperatures.

Objective

To find the best protocol for the handling of samples, we have investigated the stability of saliva proteins stored at different temperatures (from ?80 to 20°C) by one- and two-dimensional electrophoresis.

Results

At 20°C, no major changes were observed on protein one-dimensional profiles following 1 day of storage; however, between 7 days and 30 days, the native alpha-amylase band decreased slightly to give several bands with molecular weight between 35 and 25 kDa. The same phenomenon appeared after 30 days of storage at 4°C. Two-dimensional analysis of salivary maps revealed degradation from day 7 of several protein groups for samples stored at 20°C.

Conclusion

All these findings have to be carefully considered when saliva is collected for clinical proteomic analysis. We can conclude that, to maintain the optimum stability of saliva proteins, saliva samples should be collected on ice followed by the addition of protease inhibitor cocktail, centrifuged to remove insoluble material, and stored at ?20 or ?80°C.  相似文献   

5.
The purpose of this study is to evaluate whether sample preservation can affect the yield of nucleic acid extracts from environmental samples. Storage of microbial samples was studied using three sediment types of varying carbon contents (10–57% carbon of dry weight). Four different storage solutions were tested at three temperatures. Freezing of samples at ?20 °C or ?80 °C, either without preservative or in phenol–chloroform solution, retained nucleic acid quantities very efficiently. Storage of samples in phenol–chloroform solution at +4 °C also gave good yields except for sediment with extremely high-carbon content. Ethanol and RNAlater® preservation decreased nucleic acid yields drastically at all temperatures. To study how sample preservation may affect the result of microbial community analysis, one type of sediment was selected for length heterogeneity-PCR analysis and PCR cloning of the 16S rRNA genes. Ethanol and RNAlater® preservation caused a slight bias towards certain microbial types in the community analyses shown by underrepresentation of Bacteroidetes, Betaproteobacteria and Gammaproteobacteria-affiliated peak sizes and overrepresentation of Actinobacteria, Chloroflexi and Alphaproteobacteria-affiliated peak sizes. Based on the results of this study, preservation in phenol–chloroform solution can be recommended as an alternative storage method when freezing is not possible such as during extended field sampling; however, ethanol and RNAlater® may cause serious problems when used as preservatives for environmental samples containing humic acids.  相似文献   

6.
【目的】评估土壤长期保存(4个月)对土壤微生物群落代谢活性的影响。【方法】采用Biolog? EcoPlateTM生态板研究4 °C风干保存和?20 °C低温冻存的农田土壤和森林土壤中微生物群落的碳源利用模式。【结果】与新鲜土壤样品相比,长期保存的土壤样品的微生物群落对碳源的利用能力大大降低,其多样性、均匀度和Simpson指数均降低;风干保存和低温冻存两者对土壤微生物的碳源利用的影响没有显著差异;除风干保存的土壤样品中利用多聚物类的微生物类群的代谢活性外,两种保存方法显著降低微生物群落的代谢活性,降低幅度为54.5%–99.8%。【结论】长期保存土壤可能会导致对微生物群落信息的低估,土壤微生物代谢活性研究的最佳样品为新鲜 土壤。  相似文献   

7.
Many oil fields are in remote locations, and the time required for shipment of produced water samples for microbiological examination may be lengthy. No studies have reported on how storage of oil field waters can change their characteristics. Produced water samples from three Alberta oil fields were collected in sterile, industry-approved 4-l epoxy-lined steel cans, sealed with minimal headspace and stored under anoxic conditions for 14 days at either 4°C or room temperature (ca. 21°C). Storage resulted in significant changes in water chemistry, microbial number estimates and/or community response to amendment with nitrate. During room-temperature storage, activity and growth of sulfate-reducing bacteria (and, to a lesser extent, fermenters and methanogens) in the samples led to significant changes in sulfide, acetate and propionate concentrations as well as a significant increase in most probable number estimates, particularly of sulfate-reducing bacteria. Sulfide production during room-temperature storage was likely to be responsible for the altered response to nitrate amendment observed in microcosms containing sulfidogenic samples. Refrigerated storage suppressed sulfate reduction and growth of sulfate-reducing bacteria. However, declines in sulfide concentrations were observed in two of the three samples stored at 4°C, suggesting abiotic losses of sulfide. In one of the samples stored at room temperature, nitrate amendment led to ammonification. These results demonstrate that storage of oil field water samples for 14 days, such as might occur because of lengthy transport times or delays before analysis in the laboratory, can affect microbial numbers and activity as well as water sample chemistry.  相似文献   

8.
While various fixation techniques for observing ice within tissues stored at high sub-zero temperatures currently exist, these techniques require either different fixative solution compositions when assessing different storage temperatures or alteration of the sample temperature to enable alcohol-water substitution. Therefore, high-subzero cryofixation (HSC), was developed to facilitate fixation at any temperature above −80 °C without sample temperature alteration. Rat liver sections (1 cm2) were frozen at a rate of −1 °C/min to −20 °C, stored for 1 h at −20 °C, and processed using classical freeze-substitution (FS) or HSC. FS samples were plunged in liquid nitrogen and held for 1 h before transfer to −80 °C methanol. After 1, 3, or 5 days of −80 °C storage, samples were placed in 3% glutaraldehyde on dry ice and allowed to sublimate. HSC samples were stored in HSC fixative at −20 °C for 1, 3, or 5 days prior to transfer to 4 °C. Tissue sections were paraffin embedded, sliced, and stained prior to quantification of ice size. HSC fixative permeation was linear with time and could be mathematically modelled to determine duration of fixation required for a given tissue depth. Ice grain size within the inner regions of 5 d samples was consistent between HSC and FS processing (p = 0.76); however, FS processing resulted in greater ice grains in the outer region of tissue. This differed significantly from HSC outer regions (p = 0.016) and FS inner regions (p = 0.038). No difference in ice size was observed between HSC inner and outer regions (p = 0.42). This work demonstrates that HSC can be utilized to observe ice formed within liver tissue stored at −20 °C. Unlike isothermal freeze fixation and freeze substitution alternatives, the low melting point of the HSC fixative enables its use at a variety of temperatures without alteration of sample temperature or fixative composition.  相似文献   

9.
The conditions of storage, cultivation and maintenance of microbial cultures should preserve the microbiological homogeneity, phenotypic and genotypic characteristics to ensure better reproducibility of metabolic production. To evaluate the influence of the storage condition on the composition of cell fatty acids, genetic profile and biochemical characteristics of Xanthomonas campestris pv. mangiferaeindicae IBSBF 2103, as well as, to identify its relationship with the yielding and viscosity of the xanthan gum produced, this study monitored the strain preserved in two simple and widely used conditions, ultra-freezer (?80 °C) and refrigeration (3–8 °C) during 5 months. Were identified and quantified 13 fatty acids. The cells preserved at ?80 °C showed more stable concentration of all fatty acids, producing more xanthan gum and with higher viscosity. The chromosomal analysis obtained with the enzyme XbaI revealed 17 distinct fragments with maximum size of 485 kilobases, without variations among the subcultures maintained in both storage conditions. The X. campestris pv. mangiferaeindicae subcultures preserved at ?80 °C showed less pronounced phenotypic variations, which had positive influence in the qualitative and quantitative characteristics of the xanthan gum produced.  相似文献   

10.
The structure of bacterial communities in first‐year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon‐specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January–March 2004) of first‐year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from ?9°C to ?26°C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under‐ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.  相似文献   

11.
12.
High-Temperature Aquifer Thermal Energy Storage (HT-ATES) is a sustainable approach for integrating thermal energy from various sources into complex energy systems. Temperatures ≥45°C, which are relevant in impact zones of HT-ATES systems, may dramatically influence the structure and activities of indigenous aquifer microbial communities. Here, we characterized an acetate-mineralizing, sulfate-reducing microbial community derived from an aquifer and adapted to 45°C. Acetate mineralization was strongly inhibited at temperatures ≤25°C and 60°C. Prolonged incubation at 12°C and 25°C resulted in acetate mineralization recovery after 40–80 days whereas acetate was not mineralized at 60°C within 100 days. Cultures pre-grown at 45°C and inhibited for 28 days by incubation at 12°C, 25°C, or 60°C recovered quickly after changing the temperature back to 45°C. Phylotypes affiliated to the order Spirochaetales and to endospore-forming sulfate reducers of the order Clostridiales were highly abundant in microcosms being active at 45°C highlighting their key role. In summary, prolonged incubation at 45°C resulted in active microbial communities mainly consisting of organisms adapted to temperatures between the typical temperature range of mesophiles and thermophiles and being resilient to temporary heat changes.  相似文献   

13.
We report that reliable quantitative proteome analyses can be performed with tissue samples stored at ?80°C for up to 10 years. However, storing protein extracts at 4°C for 24 h and freezing protein extracts at ?80°C and thawing them significantly altered 41.6 and 17.5% of all spot intensities on 2‐DE gels, respectively. Fortunately, these storing effects did not impair the reliability of quantifying 2‐DE experiments. Nonetheless, the results show that freezing and storage conditions should be carefully controlled in proteomic experiments.  相似文献   

14.
Gamma irradiation can be used as one of the most efficient methods to reduce microorganisms in food. The irradiation of food is used for a number of purposes, including microbiological control, insects control and inhibition of sprouting and delay of senescence of living food. The aim of this study was to study effects of gamma irradiation, refrigeration and frozen storage as the combination process for improvement of red meat shelf-life. The bovine meat samples were treated with 0, 0.5, 1, 2 and 3 kGy of gamma irradiation and kept in refrigerator for 3 weeks and in freezer for 8 months. The control and irradiated samples were stored at 4–7°C and at −18°C for refrigeration and frozen storage, respectively; and microbial and chemical analyze was done at 1 week and 2 months intervals. In this study the optimum dose of gamma radiation in order to decrease the total count of Mesophilic bacteria, Coliforms, Staphylococcus aureus and especially for elimination of Salmonella was obtained at 3 kGy. Microbial analysis indicated that irradiation and storage at low temperature had a significant effect on the reduction of microbial loads. There was no significant difference in chemical characteristics during freezing storage in bovine meat. Also, irradiated meat samples (3 kGy) were stored in 4–7°C for 14 days, compared to 3 days for non irradiated samples.  相似文献   

15.
This study evaluated the formation of biogenic amines (BAs) in breast chicken meat during storage under aerobic and modified atmospheric packaging (MAP) conditions at 4 °C, the correlation of microbial and sensory changes in chicken meat with formation of BAs and the possible role of BAs as indicators of poultry meat spoilage. Poultry breast fillets were stored aerobically or under MAP (30%, CO2, 70% N2) at 4 °C for up to 17 days. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Total viable counts, Pseudomonads and Enterobacteriaceae, were in general higher for chicken samples packaged in air whereas lactic acid bacteria (LAB) and Enterobacteriaceae were among the dominant species for samples under MAP. Levels of putrescine and cadaverine increased linearly with storage time and were higher in aerobically stored chicken samples. Spermine and spermidine levels were also detected in both aerobically and MAP stored chicken meat. Levels of tyramine in both chicken samples stored aerobically and or under MAP were low (< 10 mg kg−1) whereas the formation of histamine was only observed after day 11 of storage when Enterobacteriaceae had reached a population of ca. 107 CFU g−1. Based on sensory and microbiological analyses and also taking into account a biogenic amines index (BAI, sum of putrescine, cadaverine and tyramine), BAI values between 96 and 101 mg kg−1 may be proposed as a quality index of MAP and aerobically-packaged fresh chicken meat. Spermine and spermidine decreased steadily throughout the entire storage period of chicken meat under aerobic and MAP packaging, and thus these two amines cannot be used as indicators of fresh chicken meat quality.  相似文献   

16.
R.L. Ax  J.R. Lodge 《Cryobiology》1975,12(1):93-97
Rooster spermatozoa were stored at 25, 5, or ?196 °C in either TC199, a pyruvate-lactate mouse ova culture medium, or as undiluted semen. There was a linear decrease in percent of motile sperm during storage at 25 or 5 °C in all cases, and a curvilinear decrease with increasing storage times at ?196 °C. Percent of motile sperm present after increasing storage time suggested pyruvate-lactate is a better extender than TC199 at the three storage temperatures studied. Pullets inseminated with 1 × 108 motile sperm using fresh sperm diluted in TC199 or pyruvate-lactate, or stored 24 hr at 5 or ?196 °C produced 68.7, 74.1, 20.6, and 10.8% fertile eggs, respectively. The differences in fertility between controls or between samples stored at 5 and ?196 °C were not significant. However, fertility from sperm stored at 5 and ?196 °C was significantly lower (p < .05) than both control groups. Thus, it can be concluded that TC199 or pyruvate-lactate may be used to dilute fresh rooster semen collections prior to insemination. In contrast, fertility of rooster sperm is not satisfactorily maintained after 5 or ?196 °C storage for 24 hr in a pyruvate-lactate extender.  相似文献   

17.
The two-step cooling procedure has been used to investigate factors involved in cell injury. Chinese hamster fibroblasts frozen in dimethylsulphoxide (5%, vv) were studied. Survival was measured using a cell colony assay and simultaneous observations of cellular shrinkage and the localization of intracellular ice were done by an ultrastructural examination of freeze-substituted samples.Correlations were obtained between survival and shrinkage at the holding temperature. However, cells shrunken at ?25 °C for 10 min (the optimal conditions for survival on rapid thawing from ?196 °C) contain intracellular ice nuclei at ?196 °C detectable by recrystallization. These ice nuclei only form below ?80 °C and prevent recovery on slow or interrupted thawing but not on rapid thawing. Cells shrunken at ?35 °C for 10 min (just above the temperature at which intracellular ice forms in the majority of rapidly cooled cells) can tolerate even slow thawing from ?196 °C, suggesting that they contain very few or no ice nuclei even in liquid nitrogen. Damage may correlate with the total amount of ice formed per cell rather than the size of individual crystals, and we suggest that injury occurs during rewarming and is osmotic in nature.  相似文献   

18.
Previously, we developed a new method by which 2‐cell mouse embryos can be vitrified in liquid nitrogen in a near‐equilibrium state, and then kept at ?80°C for several days. In the present study, we examined whether or not the method was effective for mouse embryos at other developmental stages. Eight‐cell embryos, morulae, and expanded blastocysts of ICR mice were vitrified with ethylene glycol‐based solutions, named EFSc because of their composition of ethylene glycol (30–40%, v/v) and FSc solution. The FSc solution was PB1 medium containing 30% (w/v) Ficoll PM‐70 plus 1.5 M sucrose. The extent of equilibrium was assessed by examining how well vitrified embryos survived after being kept at ?80°C. When 8‐cell embryos and morulae were vitrified with EFS35c or EFS40c and then kept at ?80°C, the survival rate was high even after 4 days in storage and remained high after re‐cooling in liquid nitrogen. On the other hand, the survival of vitrified‐expanded blastocysts kept at ?80°C was low. Therefore, 8‐cell embryos and morulae can be vitrified in a near‐equilibrium state using the same method as for 2‐cell embryos. A high proportion of C57BL/6J embryos at the 2‐cell, 8‐cell, and morula stages vitrified with EFS35c developed to term after transportation on dry ice, re‐cooling in liquid nitrogen, and transfer to recipients. In conclusion, the near‐equilibrium vitrification method, which is effective for 2‐cell mouse embryos, is also effective for embryos at the 8‐cell and morula stages. The method would enable handy transportation of vitrified embryos using dry ice. Mol. Reprod. Dev. 79: 785–794, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
《Free radical research》2013,47(6-7):535-540
Abstract

The antioxidant status of serum or plasma can be determined using several commercially available assays. Here, four different assays, total antioxidant status (TAS), its second-generation assay (TAS2), biological antioxidant potential (BAP), and enzymatic assay using horseradish peroxidase (EAOC), were applied on human serum samples to test the temperature stability of antioxidants, upon storage of serum for 12 months. The two or three most commonly used temperatures for storage, that is, ? 20, ? 70 (or ? 80), and ? 196°C, were selected. The general conclusion is that all assays were stable at the temperatures tested. In addition, there were almost no statistically significant differences between the samples stored at different temperatures. Only the rank order of the EAOC assay was not very good in samples stored at ? 20°C. Also three components contributing to the total antioxidant capacity, uric acid, creatinine and bilirubin, showed no statistically significant differences between the temperatures. Therefore, storage at ? 20°C is sufficient to maintain a proper assay outcome of most of the total antioxidant assays, although storage at ? 70/80°C is to be preferred for longer storage times.  相似文献   

20.
Abstract: An increase in the number of culturable organisms and a decrease in the diversity of recoverable microbiota have been reported in deep subsurface materials after storage perturbation. The magnitude of the microbial community shift in stored samples was more pronounced at 4°C compared to −20°C. Phospholipid fatty acid analyses and acridine orange direct counts indicated that biomass did not increase significantly throughout storage. Changes in the types of fatty acid methyl esters determined over the time course indicated that some of the microbial community shift was due to bacterial proliferation. However, the recovery of new bacterial types only after the storage process suggested that some of the increase in culturable cell count was due to the resuscitation of dormant microorganisms, possibly activated by some aspect of sampling, sample handling, and/or storage. Comparison of acridine orange direct counts with phospholipid and diglyceride fatty acid content suggested that much of the biomass may have been non-living at early time points; however, after 30 days of storage most of the bacterial biomass was viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号