首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Strain H117 was isolated from the Tang Yu reservoir. Based on the phylogenetic characteristics, strain H117, which was identified as Pseudomonas sp. strain H117, had the capability to utilize bicarbonate and sodium acetate as a carbon source under anaerobic conditions. Furthermore, the strain could grow on both autotrophic and heterotrophic media, and could perform both autotrophic and heterotrophic denitrification in the medium. Response surface methodology analysis demonstrated that the maximum degradation ratio of nitrate-occurred under the following conditions in the autotrophic medium: initial pH of 6.00, C/N ratio of 4.68 and temperature of 31.33°C. The maximum degradation ratio of nitrate occurred under the following conditions in the heterotrophic medium: initial pH of 6.16, C/N ratio of 8.23 and temperature of 28.48°C. Finally, the denitrification performance of strain H117 was evaluated under the optimum conditions. These results suggest that strain H117 has potential applications for the bioremediation of polluted groundwater.  相似文献   

2.
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio.  相似文献   

3.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:2,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

4.
【背景】好氧反硝化是指在有氧条件下进行反硝化作用,使得硝化和反硝化过程能够在同一反应器中同时发生,是废水脱氮最具竞争力的技术。红树林湿地中蕴藏着丰富的微生物资源,分布着大量好氧反硝化微生物。【目的】了解耐盐微生物的脱氮机制,为含盐废水生物脱氮的工程实践提供理论依据,对一株分离于红树林湿地中的耐盐好氧细菌A63的硝酸盐异化还原能力进行分析。【方法】利用形态学特征及16S rRNA基因序列测定分析,对其种属进行了鉴定,采用单因子实验测定该菌在不同环境因子下的硝酸盐还原能力,并对其反硝化脱氮条件进行了优化。【结果】初步判定该菌株为卓贝儿氏菌(Zobellellasp.),其能在盐度0%-10%、pH5.0-10.0、温度20-40°C范围内进行反硝化脱氮和硝酸盐异化还原为氨(dissimilatorynitratereductiontoammonium,DNRA)作用。菌株A63最适生长碳源为柠檬酸钠(1.2 g/L),适宜脱氮盐度为3%、pH 7.0-7.5、温度30-35°C,且C/N为10。在最适脱氮条件下,该菌株12h内能将培养基中208.8mg/L硝态氮降至0,且仅有少量铵态氮生成,无亚硝态氮积累,脱氮率高达99%。此外,该菌株在高盐度、低C/N比、弱酸性和低温等不利生境中DNRA作用显著。【结论】细菌A63生长范围宽,脱氮效率显著,适用于海水养殖废水处理。研究为今后开发高效含盐废水生物脱氮工艺奠定了基础,对于加深氮素转化规律的认识、丰富生物脱氮理论有着重要意义。  相似文献   

5.
Abstract

A cadmium tolerant strain Cupriavidus sp. H29 could be applied on simultaneous removal of nitrate, phosphorus and cadmium. Response surface methodology (RSM) experiments showed that optimal removal ratios of nitrate, phosphate and Cd(II), which reached 98.89%, 75.23% and 85.01%, occurred at Cd(II) initial concentration of 30.00?mg/L, nitrate initial concentration of 55.20?mg/L, phosphate initial concentration of 50.00?mg/L, initial pH of 7.0 and C/N ratio of 6.0. Studies on gaseous product, precipitations and extracellular polymeric substances (EPS) indicated that the removal of Cd(II) occurred in the extracellular place. Through the coordinated complexation of EPS, strain H29 can achieve the bio-induced phosphate-cadmium removal. Moreover, studies on heated cells, resting cells, permeable cells, cells membrane and cytoplasm demonstrated that the removal of Cd(II) mainly taken place on the cells membrane. This study provided the theoretical basis for the subsequent research of synchronous removal of heavy metals and other pollutants.  相似文献   

6.
Mining often leads to nitrate and metal contamination of groundwater and water bodies. Denitrification of acidic water was investigated in two up-flow fluidized-bed reactors (FBR) and using batch assays. Bacterial communities were enriched on ethanol plus nitrate in the FBRs. Initially, the effects of temperature, low-pH and ethanol/nitrate on denitrification were revealed. Batch assays showed that pH 4.8 was inhibitory to denitrification, whereas FBR characteristics permitted denitrification even at feed pH of 2.5 and at 7–8 °C. Nitrate and ethanol were removed and the feed pH was neutralized, provided that ethanol was supplied in excess to nitrate. Subsequently, Fe(II) and Cu impact on denitrification was investigated within batch tests at pH 7. Iron supplementation up to 100 mg/L resulted in iron oxidation and soluble concentrations ranging from 0.4 to 1.6 mg/L that stimulated denitrification. On the contrary, 0.7 mg/L of soluble Cu significantly slowed denitrification down resulting in about 45 % of inhibition in the first 8 h. Polymerase chain reaction—denaturant gradient gel electrophoresis demonstrated the co-existence of different denitrifying microbial consortia in FBRs. Dechloromonas denitrificans and Hydrogenophaga caeni were present in both FBRs and mainly responsible for nitrate reduction.  相似文献   

7.
一株高效去除亚硝酸氮细菌的分离鉴定及其脱氮特性研究   总被引:2,自引:0,他引:2  
【目的】从南美白对虾养殖塘中分离到高效去除亚硝酸氮的细菌, 对其分类和脱氮特性进行了研究。【方法】 以除亚硝酸氮为主要指标, 取养殖塘底层水样分离筛选菌株; 依据16S rRNA基因序列和生理生化特征初步鉴定菌株; 研究不同碳源、碳氮比、起始pH、温度、摇床转速和氯化钠浓度对反硝化除亚硝酸氮的影响, 并考查了菌株对硝酸氮和氨氮的利用情况。【结果】得到的菌株中菌株FP6活性最高, 初步鉴定菌株FP6属于地衣芽孢杆菌。菌株FP6的生长最适脱氮碳源为蔗糖, 菌株FP6去除亚硝酸氮有高活性的条件范围为: C/N值15?25、起始pH 7.0?10.0、温度20 °C?37 °C、摇床转速0?200 r/min和氯化钠浓度0?40 g/L。菌株FP6对硝酸氮和氨氮都有一定的去除能力, 利用硝酸氮时不积累亚硝酸氮。【结论】地衣芽孢杆菌FP6具有优良的除亚硝氮特性, 适宜的温度、pH和盐度范围较宽。  相似文献   

8.
利用富集培养的方法从南昌市郊某养鱼塘采样分离出22株反硝化细菌,其中8株反硝化率较高,从中选择一株效果最好的作为研究对象,命名为HS-N62,对其生长特性进行了深入研究。结果表明:硝酸盐氮初始浓度为140mg/L,菌株HS-N62在12h内对硝酸盐氮的去除率可达96%,而且没有亚硝酸盐氮的积累。该菌最适生长温度范围为30°C-37°C,最适生长pH范围6.0-8.0,最适C/N比为10:1,并能利用多种碳源生长。运用正交试验探讨了该菌株最适的反硝化条件。反硝化菌株HS-N62还具有较好的除磷能力,12h除磷率达到67.7%(初始磷酸盐浓度57mg/L)。通过形态学特性和生理生化分析以及16S rRNA基因序列分析,菌株HS-N62与Pseudomonas sp.亲缘关系最为接近,相似性达99%,初步鉴定该菌为假单胞菌属(Pseudomonas sp.)。  相似文献   

9.
一株荧光假单胞杆菌的分离鉴定与反硝化特性   总被引:1,自引:0,他引:1  
【目的】从污水厂的活性污泥中获得一株高效反硝化细菌。【方法】采用低温驯化,进行初筛、复筛选取一株反硝化活性最高的菌株,命名为L2,通过形态学、生理生化特征及16S r RNA基因序列分析研究其分类地位,系统研究理化因素对该菌株反硝化性能的影响。【结果】菌株在低温条件下能够稳定高效地进行反硝化,鉴定该菌株为荧光假单胞杆菌(Pseudomonas fluorescens),其反硝化最适接种量为10%,温度为20°C,p H为7.0,盐浓度为0.5%,碳源为葡萄糖,C/N为5.0,能够耐受较高初始硝态氮浓度。【结论】菌株L2是一株耐低温、耐高浓度初始硝态氮、耐低C/N、兼性厌氧、高效反硝化的荧光假单胞杆菌。  相似文献   

10.
以纸为碳源去除地下水硝酸盐的研究   总被引:13,自引:0,他引:13  
研究了以纸为碳源和反应介质的生物反应器对水中硝酸盐的去除。结果表明,以纸为碳源的反应器启动快.反硝化反应受温度及水力停留时间影响大。25℃的反硝化速率是14℃的1.7倍。在室温25±1℃,进水硝酸盐氮浓度为45.2mg·L^-1、水力停留时间8.6h时,反应器对硝酸盐氮的去除率在99.6%以上,当水力停留时间为7.2h,氮去除率只有50%。反硝化反应受pH值和溶解氧的影响小,反应进行过程中,纸表面形成了生物膜,纸也被消耗了.采用反应器出水再经活性炭吸附的工艺流程处理高硝酸盐氮地下水,<33.9mg·L^-1的硝酸盐氮完全去除,没有出现NC2-N,最终出水水质DOC<11mg·L^-1。  相似文献   

11.
The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.  相似文献   

12.
In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells’ capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water.  相似文献   

13.
The enzymatic oxidation of Fe(II) by nitrate‐reducing bacteria was first suggested about two decades ago. It has since been found that most strains are mixotrophic and need an additional organic co‐substrate for complete and prolonged Fe(II) oxidation. Research during the last few years has tried to determine to what extent the observed Fe(II) oxidation is driven enzymatically, or abiotically by nitrite produced during heterotrophic denitrification. A recent study reported that nitrite was not able to oxidize Fe(II)‐EDTA abiotically, but the addition of the mixotrophic nitrate‐reducing Fe(II)‐oxidizer, Acidovorax sp. strain 2AN, led to Fe(II) oxidation (Chakraborty & Picardal, 2013). This, along with other results of that study, was used to argue that Fe(II) oxidation in strain 2AN was enzymatically catalyzed. However, the absence of abiotic Fe(II)‐EDTA oxidation by nitrite reported in that study contrasts with previously published data. We have repeated the abiotic and biotic experiments and observed rapid abiotic oxidation of Fe(II)‐EDTA by nitrite, resulting in the formation of Fe(III)‐EDTA and the green Fe(II)‐EDTA‐NO complex. Additionally, we found that cultivating the Acidovorax strains BoFeN1 and 2AN with 10 mm nitrate, 5 mm acetate, and approximately 10 mm Fe(II)‐EDTA resulted only in incomplete Fe(II)‐EDTA oxidation of 47–71%. Cultures of strain BoFeN1 turned green (due to the presence of Fe(II)‐EDTA‐NO) and the green color persisted over the course of the experiments, whereas strain 2AN was able to further oxidize the Fe(II)‐EDTA‐NO complex. Our work shows that the two used Acidovorax strains behave very differently in their ability to deal with toxic effects of Fe‐EDTA species and the further reduction of the Fe(II)‐EDTA‐NO nitrosyl complex. Although the enzymatic oxidation of Fe(II) cannot be ruled out, this study underlines the importance of nitrite in nitrate‐reducing Fe(II)‐ and Fe(II)‐EDTA‐oxidizing cultures and demonstrates that Fe(II)‐EDTA cannot be used to demonstrate unequivocally the enzymatic oxidation of Fe(II) by mixotrophic Fe(II)‐oxidizers.  相似文献   

14.
Biological denitrification of high nitrate-containing wastewater was examined in a sulfur-packed column using a smaller amount of methanol than required stoichiometrically for heterotrophic denitrification. In the absence of methanol, the observed nitrate removal efficiency was only about 40%, and remained at 400 mg NO(3)(-)-N/l, which was due to an alkalinity deficiency of the pH buffer and of CO(2) as a carbon source. Complete denitrification was achieved by adding approximately 1.4 g methanol/g nitrate-nitrogen (NO(3)(-)-N) to a sulfur-packed reactor. As the methanol concentration increased, the overall nitrate removal efficiency increased. As influent methanol concentrations increased from 285 to 570, 855, and 1,140 mg/l, the value of Delta mg alkalinity as CaCO(3) consumed/Delta mg NO(3)(-)-N removed increased from -1.94 to -0.84, 0.24, and 0.96, and Delta mg SO(4)(2-) produced/Delta mg NO(3)(-)-N removed decreased from 4.42 to 3.57, 2.58, and 1.26, respectively. These results imply the co-occurrence of simultaneous autotrophic and heterotrophic denitrification. Sulfur-utilizing autotrophic denitrification in the presence of a small amount of methanol is very effective at decreasing both sulfate production and alkalinity consumption. Most of methanol added was removed completely in the effluent. A small amount of nitrite accumulated in the mixotrophic column, which was less than 20 mg NO(2)(-) -N/l, while under heterotrophic denitrification conditions, nitrite accumulated steadily and increased to 60 mg NO(2)(-) -N/l with increasing column height.  相似文献   

15.
Static experiments were conducted to investigate the effects of environmental factors on nitrate (NO3?-N)-removal efficiency, such as NO3?-N loading, pH value, C/N ratio and temperature in activated sludge using Fe (II) as electron donor. The results demonstrated that the average denitrification rate increased from 1.25 to 2.23 mg NO3?-N/(L·h) with NO3?-N loading increased from 30 to 60 mg/L. When pH increased from 7 to 8, the concentration of NO3?-N and nitrite (NO2?-N) in effluent were all maintained at quite low levels. C/N ratio had little impact on denitrification process, i.e., inorganic carbon (C) source could still be enough for denitrification process with C/N ratio as low as 5. Temperature had a significant effect on the denitrification efficiency, and NO3?-N removal efficiency of 92.03%, 96.77%, 97.67% and 98.23% could be obtained with temperature of 25°C, 30°C, 35°C and 40°C, respectively. SEM, XRD and XRF analysis was used to investigate microscopic surface morphology and chemical composition of the denitrifying activated sludge, and mechanism of the nitrate-dependent anaerobic ferrous oxidation (NAFO) bacterias could be explored with this research.  相似文献   

16.
The dispersion of nitrogenous compounds and heavy metals into the environment is frequent during mining activities. The effects of nickel (Ni) and cobalt (Co) on denitrification of simulated mine waters were investigated in batch bioassays and fluidized-bed reactors (FBRs). At pH 7, batch tests revealed that Co did not exhibit inhibition on denitrification even at 86.6 mg/L. Ni showed to be inhibitory at 50 and 100 mg/L by decreasing nitrate removal efficiencies of 18 and 65 %, respectively. In two FBRs, operated at 7–8 and 22 °C, 5.5 mg/L Ni did not affect nitrate and nitrite removals because of FBR potential of diluting soluble Ni feed concentration. On the contrary, the effluent pH clearly decreased in both FBR1 and FBR2 because of nickel sulfide precipitation and Ni inhibition of the last two steps of denitrification. When Ni injection was stopped, the process recovered more slowly at 22 than 7–8 °C. This is the first study reporting the effect of Ni on denitrification in biological FBRs.  相似文献   

17.
Wan D  Liu H  Qu J  Lei P  Xiao S  Hou Y 《Bioresource technology》2009,100(1):142-148
A combined bioelectrochemical and sulfur autotrophic denitrification system (CBSAD) was evaluated to treat a groundwater with nitrate contamination (20.9-22.0mgNO(3)(-)-N/L). The reactor was operated continuously for several months with groundwater to maximize treatment efficiency under different hydraulic retention times (HRT) and electric currents. The denitrification rate of sulfur autotrophic part followed a half-order kinetics model. Moreover, the removal efficiency of bioelectrochemical part depended on the electric current. The reactor could be operated efficiently at the HRT ranged from 4.2 to 2.1h (corresponding nitrogen volume-loading rates varied from 0.12 to 0.24 kg N/m(3)d; and optimum current ranged from 30 to 1000 mA), and the NO(3)(-)-N removal rate ranged from 95% to 100% without NO(3)(-)-N accumulation. The pH of effluent was satisfactorily adjusted by bioelectrochemical part, and the sulfate concentration of effluent was lower than 250 mg/L, meeting the drinking water standard of China EPA.  相似文献   

18.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

19.
【目的】探究不同菌浓度和亚铁浓度条件下,Acidovorax sp. strain BoFeN1介导的厌氧亚铁氧化耦合硝酸盐还原过程的动力学和次生矿物。【方法】构建包含菌BoFeN1、硝酸盐、亚铁的厌氧培养体系,测试硝酸根、亚硝酸根、乙酸根、亚铁等浓度,并收集次生矿物,采用XRD、SEM进行矿物种类和形貌表征。【结果】在微生物介导硝酸盐还原耦合亚铁氧化的体系中,高菌浓度促进硝酸盐还原,对亚铁氧化也有一定促进作用;高浓度亚铁在低菌浓度下氧化反应速率和程度降低,但是在高菌浓度下无明显影响;亚铁浓度越高次生矿物结晶度越高,但对硝酸盐还原具有一定抑制作用。在微生物介导亚硝酸盐还原耦合亚铁氧化的体系中,高的菌浓度和亚铁浓度都会促进亚硝酸盐还原,但亚铁氧化的次生矿物会对亚硝酸盐的微生物还原产生较强的抑制作用,次生矿物的种类和结晶度主要受亚铁浓度影响。【结论】硝酸盐还原主要是生物反硝化作用,亚硝酸盐还原包含生物反硝化和化学反硝化两部分,在硝酸盐体系中亚铁氧化与次生矿物生成是受生物和化学反硝化作用的共同影响,但亚硝酸盐体系中亚铁氧化与次生矿物生成主要是受化学反硝化作用影响。该研究可为深入理解厌氧微生物介导铁氮耦合反应机制提供基础数据和理论支撑。  相似文献   

20.
The remediation of heavy metal‐polluted aquatic sediment by solid‐bed bioleaching requires a material well permeable to air and water. Freshly dredged sediment is nearly impermeable and needs previous conditioning to make it suitable for solid‐bed leaching. This conditioning – in practice carried out by planting sediment packages with helophytes – comprises water removal by evapotranspiration, abiotic and microbial oxidation of sediment‐borne reduced compounds, acidification, as well as structural changes improving the sediment permeability. The rate of this process seems to be limited by the transport of oxygen into the sediment bed. For a better understanding of the physicochemical processes occurring during conditioning, sediment oxidation was studied in a stirred suspension to minimize transport limitations. Freshly dredged, silty, anoxic, heavy metal‐polluted sediment from the Weisse Elster River (Germany) was suspended in water and then continuously stirred and aerated at 20 °C. Aerobic conditions appeared within a few hours. The redox potential increased from – 400 to + 220 mV, at first very quickly and later more slowly. Sediment‐borne inorganic sulfur compounds were oxidized to sulfate (S0 mainly within two days and sulfide within ten days), which reduced the pH from 7.2 to 5.9. A successive oxidation of FeS to Fe(II) sulfate, the oxidation of Fe(II) to Fe(III) followed by Fe(III) oxyhydrate formation caused the dissolved Fe to sharply increase and thereafter rapidly decrease. Ammonium was completely oxidized in a nitrification process to form nitrate, further decreasing the pH to 5.5. The acidification increased the solubility of Mn, Zn, Mg, Ca, and K. The increase in dissolved Mn rules out any oxidation of Mn(II) to Mn(IV) since Mn(IV) would have been insoluble under the prevailing pH and redox conditions. Sediment oxidation did not proceed in a well‐defined, redox‐potential‐directed order, but individual (partly microbially) oxidation processes superimposed each other. Physicochemical conditioning of suspended sediment was completed after 20 days while conditioning in a solid bed would require months or even years. These different rates result from transport limitations in the solid bed. Sediment conditioning in a solid bed could therefore possibly be accelerated by prior sediment aeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号