首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity of the developing central nervous system (CNS) to the deleterious effects of ethanol has been well documented, with exposure leading to a wide array of CNS abnormalities. Certain CNS regions are susceptible to ethanol during well-defined critical periods. In the neonatal rodent cerebellum, a profound loss of Purkinje cells is found when ethanol is administered early in the postnatal period [on postnatal days 4 or 5 (P4-5)], while this neuronal population is much less vulnerable to similar ethanol insult slightly later in the postnatal period (P7-9). Prior studies have shown that neurotrophic factors (NTFs) can be altered by ethanol exposure, and both in vitro and in vivo studies have provided evidence that such substances have the potential to protect against ethanol neurotoxicity. In the present study, it was hypothesized that depletion of an NTF shown to be important to cerebellar development would exacerbate ethanol-related effects within this region, when administration was confined to a normally ethanol-resistant ontogenetic period. For this study, brain-derived neurotrophic factor (BDNF) gene-deleted ("knockout") and wild-type mice were exposed to ethanol via vapor inhalation or to control conditions during the normally ethanol-resistant period (P7 and P8). Two hours after termination of exposure on P8, analyses were made of body weight, crown-rump length, and brain weight. In subsequent investigations, the number and density of Purkinje cells and the volume of cerebellar lobule I were determined, and the expression of anti- and pro-apoptotic proteins and the activities of endogenous antioxidants were assessed. It was found that the BDNF knockouts were significantly smaller than the wild-type animals, with smaller brain weights. Purkinje cell number and density was reduced in ethanol-treated knockout, but not wild-type animals, and the volume of lobule I was significantly decreased in the gene-deleted animals compared to wild-types, but was not further affected by ethanol treatment. The loss of Purkinje cells in the BDNF knockouts was accompanied by decreases in anti-apoptotic Bcl-xl and in phosphorylated (and hence inactivated) pro-apoptotic Bad, and reduced activity of the antioxidant glutathione reductase, while the antioxidant catalase was increased by ethanol treatment in this genotype. In the wild-type animals, anti-apoptotic Bcl-2 was decreased by ethanol treatment, but the pro-apoptotic c-Jun N-terminal kinase (JNK) was markedly diminished by ethanol exposure, while the activity of the protective antioxidant superoxide dismutase (SOD) was significantly enhanced. These results suggest that neurotrophic factors have the capacity to protect against ethanol neurotoxicity, perhaps by regulation of expression of molecules critical to neuronal survival such as elements of the apoptosis cascade and protective antioxidants.  相似文献   

2.
The aim of this study was to explore the mechanisms of brain damage induced by the combined treatment of mice with 1,2‐dichloroethane (1,2‐DCE) and ethanol. Mice were divided into control group; 1,2‐DCE‐intoxicated group; ethanol‐treated group; and low‐, medium‐, and high‐dose combined treatment groups. Histological observations along with brain organ coefficients and water content were used to measure the brain damage directly and indirectly. The levels of nonprotein sulfhydryls, malondialdehyde (MDA), and superoxide dismutase activity were used as parameters to evaluate oxidative stress in the brain. Protein and messenger RNA (mRNA) levels of cytochrome P450 2E1 (CYP2E1), zonula occludens‐1 (occludin and zo‐1), aquaporin‐4 (AQP4), nuclear factor erythroid 2‐related factor 2 (Nrf2), heme oxygenase (HO)‐1, and the γ‐glutamyl cysteine synthetase catalytic and modulatory subunits (γ‐GCSc, GR, and γ‐GCSm) in the brain were examined by Western blot analysis and quantitative polymerase chain reaction analysis, respectively. Effects of the combined treatment of 1,2‐DCE and ethanol were evaluated by analysis of variance with a factorial design. The results suggested that combined exposure to ethanol and 1,2‐DCE synergistically increased CYP2E1 protein and mRNA levels, accelerated the metabolism of ethanol and 1,2‐DCE in the brain tissue, induced high production of reactive oxygen species (ROS), and increased MDA levels, thereby damaging the blood‐brain barrier and causing obvious pathological changes in brain tissue. However, the increased level of ROS activated the Nrf2 signal transduction pathway, promoting the expression of HO‐1 and glutathione‐related antioxidant enzymes in the brain to protect the cells from oxidative damage.  相似文献   

3.
During early post‐natal development of the cerebellum, granule neurons (GN) execute a centripetal migration toward the internal granular layer, whereas basket and stellate cells (B/SC) migrate centrifugally to reach their final position in the molecular layer (ML). We have previously shown that pituitary adenylate cyclase‐activating polypeptide (PACAP) stimulates in vitro the expression and release of the serine protease tissue‐type plasminogen activator (tPA) from GN, but the coordinated role of PACAP and tPA during interneuron migration has not yet been investigated. Here, we show that endogenous PACAP is responsible for the transient arrest phase of GN at the level of the Purkinje cell layer (PCL) but has no effect on B/SC. tPA is devoid of direct effect on GN motility in vitro, although it is widely distributed along interneuron migratory routes in the ML, PCL, and internal granular layer. Interestingly, plasminogen activator inhibitor 1 reduces the migration speed of GN in the ML and PCL, and that of B/SC in the ML. Taken together, these results reveal for the first time that tPA facilitates the migration of both GN and fast B/SC at the level of their intersection in the ML through degradation of the extracellular matrix.

  相似文献   


4.
Basal and antioxidant-induced changes in the isoenzyme and isoform patterns of cardiac lactate dehydrogenase (EC 1.1.1.27) and hepatic alkaline phosphatase (EC 3.1.3.1), respectively, as well as the electrophoretic patterns of serum proteins in different age groups of male golden hamster were compared. This is to test whether age-induced changes could be corrected by long-term administration of antioxidants. Data indicated that aging causes no remarkable change in the total activity of either cardiac LDH or hepatic ALP, however a significant increase in the fractional activity of some cardiac LDH isoenzymes and a significant reduction in the fractional activity of some hepatic ALP isoforms were induced by aging. On the other hand, long-term administration of antioxidants appeared to manifest a clear counteracting effect on the age-related changes in old age. This effect was indicated in the fractional activity of cardiac LDH isoenzymes and of hepatic ALP isoforms. The present study has also shown a wide-range variation in serum protein patterns due to aging and/or antioxidant administration, which indirectly reflect a parallel variation in the process of gene expression and/or proteolytic activity.  相似文献   

5.
Dietary micronutrients have the ability to strongly influence animal physiology and ecology. For songbirds, dietary polyunsaturated fatty acids (PUFAs) and antioxidants are hypothesized to be particularly important micronutrients because of their influence on an individual's capacity for aerobic metabolism and recovery from extended bouts of exercise. However, the influence of specific fatty acids and hydrophilic antioxidants on whole‐animal performance remains largely untested. We used diet manipulations to directly test the effects of dietary PUFA, specifically linoleic acid (18:2n6), and anthocyanins, a hydrophilic antioxidant, on basal metabolic rate (BMR), peak metabolic rate (PMR), and rates of fat catabolism, lean catabolism, and energy expenditure during sustained flight in a wind tunnel in European starlings (Sturnus vulgaris). BMR, PMR, energy expenditure, and fat metabolism decreased and lean catabolism increased over the course of the experiment in birds fed a high (32%) 18:2n6 diet, while birds fed a low (13%) 18:2n6 diet exhibited the reverse pattern. Additionally, energy expenditure, fat catabolism, and flight duration were all subject to diet‐specific effects of whole‐body fat content. Dietary antioxidants and diet‐related differences in tissue fatty acid composition were not directly related to any measure of whole‐animal performance. Together, these results suggest that the effect of dietary 18:2n6 on performance was most likely the result of the signaling properties of 18:2n6. This implies that dietary PUFA influence the energetic capabilities of songbirds and could strongly influence songbird ecology, given their availability in terrestrial systems.  相似文献   

6.
The fusion protein Bcr–Abl, which is the molecular cause of chronic myelogenous leukemia (CML) interacts in multiple points with signaling pathways regulating the cellular adhesivity and cytoskeleton architecture and dynamics. We explored the effects of imatinib mesylate, an inhibitor of Bcr–Abl protein used in front‐line CML therapy, on the adhesivity of JURL‐MK1 cells to fibronectin and searched for underlying changes in the cell proteome. As imatinib induces apoptosis of JURL‐MK1 cells, we used three different caspase inhibitors to discriminate between direct consequences of Bcr–Abl inhibition and secondary changes related to the apoptosis. Imatinib treatment caused a transient increase in JURL‐MK1 cell adhesivity to fibronectin, possibly due to the switch off of Bcr–Abl activity. Subsequently, we observed a number of changes including a decrease in cell adhesivity, F‐actin decomposition, reduction of integrin β1, CD44, and paxillin expression levels and a marked increase in cofilin phophorylation at Ser3. These events were generally related to the proceeding apoptosis but they differed in their sensitivity to the individual caspase inhibitors. J. Cell. Biochem. 111: 1413–1425, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Evidence from epidemiological and animal studies showed that exposure to extremely low frequency magnetic fields (ELF‐MF) could produce deleterious effects on reproduction. In order to investigate the possible mechanism of MF exposure on reproductive effects, first trimester human chorionic villi at 8–10 weeks' gestation were obtained, and trophoblasts were isolated, cultured, and exposed to a 50‐Hz MF for different durations. The human chorionic gonadotropin (hCG) and progesterone in the culture medium was measured by electrochemiluminescence immunoassay. The mRNA levels of apoptosis‐related genes bcl‐2, bax, caspase‐3, p53, and fas in trophoblasts were analyzed using real‐time RT‐PCR. The results showed that exposure of trophoblasts to MF at 0.2 mT for 72 h did not affect secretion of hCG and progesterone from these cells. There was also no significant change in secretion of these hormones when trophoblasts were exposed to a 0.4 mT MF for 48 h. However, MF significantly inhibited hCG and progesterone secretion of trophoblasts after exposure for 72 h at 0.4 mT. Results of apoptosis‐related gene expression analysis showed that, within 72 h of exposure at 0.4 mT, there was no significant difference between MF exposure and control on the expression pattern of each gene. Based on results of the present experiment, it is suggested that exposure to MF for a longer duration (72 h) could inhibit secretion of hCG and progesterone by human first trimester villous trophoblasts, however, the effect might not be related to trophoblast apoptosis. Bioelectromagnetics 31:566–572, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age‐group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Currently there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in eight inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T+tf/J, C3H/HeJ and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1 h. Immediately following access mice were administered ethanol (0, 1.5, 2.25 and 3 g/kg, ip). This procedure was repeated in 72 h intervals for a total of five CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain.  相似文献   

9.
10.
Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3‐D ex vivo culture technique in combination with reverse‐phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3‐D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.  相似文献   

11.
12.
13.
The influence of 2‐methoxyestradiol (2‐ME) was investigated on cell numbers, morphology, cell cycle progression, and apoptosis induction in an oesophageal carcinoma cell line (WHCO3). Dose‐dependent studies (1 × 10?9M–1 × 10?6M) revealed that 2‐ME significantly reduced cell numbers to 60% in WHCO3 after 72 h of exposure at a concentration of 1 × 10?6M compared to vehicle‐treated cells. Morphological studies entailing light‐, fluorescent‐, as well as transmission electron microscopy (TEM) confirmed 2‐ME's antimitotic effects. These results indicated hallmarks of apoptosis including cell shrinkage, hypercondensation of chromatin, cell membrane blebbing, and apoptotic bodies in treated cells. Flow cytometric analyses demonstrated an increase in the G2/M‐phase after 2‐ME exposure; thus preventing cells from proceeding through the cell cycle. β‐tubulin immunofluorescence revealed that 2‐ME caused spindle disruption. In addition, increased expression of death receptor 5 protein was observed further supporting the proposed mechanism of apoptosis induction via the extrinsic pathway in 2‐ME‐exposed oesophageal carcinoma cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.  相似文献   

16.
The isthmo‐optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain‐derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin‐4 (NT‐4), glial cell line–derived neurotrophic factor (GDNF), and insulin‐like growth factor I (IGF‐I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target‐derived trophic factors for the ION in 13‐ to 16‐day‐old chick embryos. Unlike BDNF, neither GDNF, NT‐4, nor IGF‐I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF‐I promoted neurite outgrowth from ION explants, whereas GDNF and NT‐4 had no effect. Injections of NT‐4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT‐4–like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT‐4, but not GDNF or IGF‐I, was retrogradely transported from the retina to the ION. NT‐4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT‐4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT‐4 to chick p75 receptors was confirmed in L‐cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF‐I may be an afferent trophic factor for the ION, and NT‐4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 289–303, 2000  相似文献   

17.
Recent studies report that chalcones exhibit cytotoxicity to human cancer cell lines. Typically, the form of cell death induced by these compounds is apoptosis. In the context of the discovery of new anticancer agents and in light of the antitumour potential of several chalcone derivatives, in the present study, we synthesized and tested the cytotoxicity of six chalcone derivatives on human colon adenocarcinoma cells. Six derivatives of 3‐phenyl‐1‐(thiophen‐2‐yl) prop‐2‐en‐1‐one were prepared and characterized on the basis of their 1H and 13C NMR spectra. HT‐29 cells were treated with synthesized chalcones on two concentrations by three different incubation times. Cells were evaluated by cell morphology, Tetrazolium dye (MTT) colorimetric assay, live/dead, flow cytometry (annexin V) and gene expression analyses to determine the cytotoxic way. Chalcones 3‐(4‐bromophenyl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one (C06) and 3‐(2‐nitrophenyl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one (C09) demonstrated higher cytotoxicity than other chalcones as shown by cell morphology, live/dead and MTT assays. In addition, C06 induced apoptosis on flow cytometry annexin V assay. These data were confirmed by a decreased expression of anti‐apoptotic genes and increased pro‐apoptotic genes. Our findings indicate in summary that the cytotoxic activity of chalcone C06 on colorectal carcinoma cells occurs by apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Changes in the contents of ethanol, lactate and malate were determined at different activities of the plasma membrane H+ pump [in the presence and absence of fusicoccin (FC)] and at different O2 availability in cultured cells of Acer pseudoplatanus L. FC induced acidification of the medium under all tested conditions of O2 availability. At low O2 concentrations both ethanolic and lactic fermentations occurred, and FC markedly stimulated lactate production but had no effect on ethanol production. There was also a small, stimulating effect of FC on malate production. At high O2 concentrations no ethanol production was observed and lactate production was reduced. Under these conditions the stimulating effect of FC on lactate production decreased, while that on malate production increased. FC-induced synthesis of lactate and malate is interpreted as depending on the activation of lactate dehydrogenase (EC 1.1.1.27) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) (alkaline pH optima), respectively, due to the alkalinization of the cytoplasmic pH resulting from the stimulation of the H+ pump by FC. These results suggest that the balance between the two pH stat systems depends on the availability of O2.  相似文献   

19.
In the present investigation, we initially evaluated the in vitro effect of N‐acetylarginine on thiobarbituric acid‐reactive substances (TBA‐RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) in the blood, kidney and liver of rats. Results showed that N‐acetylarginine, at a concentration of 5.0 μM, decreased the activity of CAT in erythrocytes, enhanced TBA‐RS in the renal cortex, decreased CAT and SOD activities in the renal medulla and decreased CAT and increased SOD and GSH‐Px activities in the liver of 60‐day‐old rats. Furthermore, we tested the influence of the antioxidants, trolox and ascorbic acid, as well as of the Nω‐nitro‐L ‐arginine methyl ester (L‐NAME) on the effects elicited by N‐acetylarginine on the parameters tested. Antioxidants and L‐NAME prevented most of the alterations caused by N‐acetylarginine on the oxidative stress parameters evaluated. Data indicate that oxidative stress induction is probably mediated by the generation of NO and/or ONOO? and other free radicals because L‐NAME and antioxidants prevented the effects caused by N‐acetylarginine in the blood, renal tissues and liver of rats. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by N‐acetylarginine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Evidence suggests that environmental and dietary factors may contribute to the pathogenesis of Parkinson’s disease (PD). High dietary intake of cholesterol is such a factor that has been shown to increase or decrease the risk of PD. However, because circulating cholesterol does not cross the blood–brain barrier, the mechanisms linking dietary cholesterol to the pathogenesis of PD remain to be understood. In contrast to cholesterol, the oxidized cholesterol metabolites (oxysterols), 24S‐hydroxycholesterol (24‐OHC) and 27‐hydroxycholesterol (27‐OHC), can cross the blood–brain barrier and may place the brain at risk of degeneration. In this study, we incubated the human neuroblastoma SH‐SY5Y cells for 24 h with 24‐OHC, 27‐OHC, or a mixture of 24‐OHC plus 27‐OHC, and have determined effects on tyrosine hydroxylase (the rate‐limiting enzyme in dopamine synthesis) levels, α‐synuclein levels, and apoptosis. We demonstrate that while 24‐OHC increases the levels of tyrosine hydroxylase, 27‐OHC increases levels of α‐synuclein, and induces apoptosis. Our findings show for the first time that oxysterols trigger changes in levels of proteins that are associated with the pathogenesis of PD. As steady state levels of 24‐OHC and 27‐OHC are tightly regulated in the brain, disturbances in these levels may contribute to the pathogenesis of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号