首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
The role of an inositol 1,4,5-trisphosphate (IP3)-mediated transduction cascade in the response of taste receptor cells of the fleshfly Boettcherisca peregrina was investigated by using the following reagents: neomycin (an inhibitor of IP3 production), U73122 (an inhibitor of phospholipase C), adenophostin A (an agonist of the IP3-gated channel), IP3, ruthenium red (a blocker of the IP3-gated channel), and 2-aminoethoxydiphenylborate (2-APB; an antagonist of the IP3-gated channel). For introduction into the receptor cell, the reagents were mixed with a detergent, deoxycholate (DOC). After treatment with neomycin + DOC or U73122 + DOC, the response of the sugar receptor cell to sugars was depressed compared with responses after treatment with DOC alone. During the treatment of adenophostin A + DOC, the response of the sugar receptor cell was elicited. After treatment with IP3 + DOC, the response of the sugar receptor cell to sugars and to amino acids was apparently enhanced. When taste stimuli were administered in the presence of ruthenium red or 2-APB, the response of the sugar receptor cell to glucose were inhibited. The expression of genes for substances involved in the IP3 transduction cascade, such as G protein alpha subunit (dGqalpha), phospholipase C (norpA), and IP3 receptor (itpr), were examined in the taste receptor cell of the fruitfly Drosophila melanogaster by using the pox-neuro70 mutant (poxn70), which lacks taste receptor cells. The expressed levels of dGqalpha and itpr in the tarsus of poxn70 mutant flies were reduced compared with those of wild-type flies. These results suggest that the IP3 transduction cascade is involved in the response of the sugar receptor cell of the fly.  相似文献   

2.
A role for inositol 1,4,5‐trisphosphate (IP3) as a second messenger during olfactory transduction has been postulated in both vertebrates and invertebrates. However, given the absence of either suitable pharmacological reagents or mutant alleles specific for the IP3 signaling pathway, an unequivocal demonstration of IP3 function in olfaction has not been possible. Here we have investigated the role of a well‐established cellular target of IP3—the IP3 receptor (IP3R)—in olfactory transduction in Drosophila. For this purpose we tested existing viable combinations of IP3R mutant alleles, as well as a newly generated set of viable itpr alleles, for olfactory function. In all of the viable allelic combinations primary olfactory responses were found to be normal. However, a subset of itpr alleles (including a null allele) exhibit faster recovery after a strong pulse of odor, indicating that the IP3R is required for maintenance of olfactory adaptation. Interestingly, this defect in adaptation is dominant for two of the alleles tested, suggesting that the mechanism of adaptation is sensitive to levels of the IP3R. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 282–288, 2000  相似文献   

3.
Background information. In endocrine cells, IP3R (inositol 1,4,5‐trisphosphate receptor), a ligand‐gated Ca2+ channel, plays an important role in the control of intracellular Ca2+ concentration. There are three subtypes of IP3R that are distributed differentially among cell types. RINm5F cells express almost exclusively the IP3R‐3 subtype. The purpose of the present study was to investigate the effect of PKA (protein kinase A) on the activity of IP3R‐3 in RINm5F cells. Results. We show that immunoprecipitated IP3R‐3 is a good substrate for PKA. Using a back‐phosphorylation approach, we show that endogenous PKA phosphorylates IP3R‐3 in intact RINm5F cells. [3H]IP3 (inositol 1,4,5‐trisphosphate) binding affinity and IP3‐induced Ca2+ release activity were enhanced in permeabilized cells that were pre‐treated with forskolin or PKA. The PKA‐induced enhancement of IP3R‐3 activity was also observed in intact RINm5F cells stimulated with carbachol and epidermal growth factor, two agonists that use different receptor types to activate phospholipase C. Conclusion. The results of the present study reveal a converging step where the cAMP and the Ca2+ signalling systems act co‐operatively in endocrine cell responses to external stimuli.  相似文献   

4.
TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca~(2+) release from Ca~(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca~(2+) imaging and tension measurements to test agonist-induced intracellular Ca~(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol(CCh)-evoked Ca~(2+) release and extracellular Ca~(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor(IP3) production, and 2-aminoethoxydiphenyl borate(2APB), which inhibits IP3 recepor(IP3R) to abolish IP3R-mediated Ca~(2+) release. To confirm the role of Ca~(2+) release in CCh-induced gallbladder contraction, we used thapsigargin(TG)-to deplete Ca~(2+) stores via inhibiting sarco/endoplasmic reticulum Ca~(2+)-ATPase and eliminate the role of store-operated Ca~(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L~(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca~(2+) release from intracellular Ca~(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.  相似文献   

5.
The taste organ in insects is a hair-shaped taste sensory unit having four functionally differentiated contact chemoreceptor cells. In the blowfly, Phormia regina, cGMP has been suggested to be a second messenger for the sugar receptor cell. Generally, cGMP is produced by membranous or soluble guanylyl cyclase (sGC), which can be activated by nitric oxide (NO). In the present paper, we electrophysiologically showed that an NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), an NO donor, 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC 7) or an NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) specifically affected the response in the sugar receptor cell, but not in other receptor cells. PTIO, when introduced into the receptor cells in a sensillum aided by sodium deoxycholate (DOC, pH 7.2), depressed the response of sugar receptor cells to sucrose but did not affect those of the salt or water receptor cells. NOC 7, given extracellularly, latently induced the response of sugar receptor cells; and L-NAME, when introduced into the receptor cells, depressed the response of sugar receptor cells. The results clearly suggest that NO, which may be produced by intrinsic NOS in sugar receptor cells, participates in the transduction cascade of these cells in blowfly.  相似文献   

6.
Cyanide-induced neurotoxicity is associated with altered cellular Ca2+ homeostasis resulting in sustained elevation of cytosolic Ca2+. In order to characterize the effect of cyanide on intracellular signaling mechanisms, the interaction of KCN with the inositol 1,4,5-triphosphate Ca2+ signaling system was determined in the PC12 cell line. KCN in the concentration range of 1.0–100 μM produced a rapid rise in intracellular IP3 levels (peak level occurred within 60 sec); 10 μM KCN elevated intracellular levels of IP3 to 148% of control levels. This response was mediated by phospholipase C (PLC) since U73122, a specific PLC inhibitor, blocked the response. Removal of Ca2+ from the incubation medium and chelation of intracellular Ca2+ with BAPTA partially attenuate the cyanide-stimulated IP3 generation, showing that the response is partially Ca2+ dependent. Also, treatment of cells with nifedipine or LaCl3, Ca2+ channel blockers, partially blocked the generation of IP3. This study shows that cyanide in concentrations as low as 1 μM stimulates IP3 generation that may be mediated by receptor and nonreceptor IP3 production since they have differential dependence on Ca2+. It is proposed that this response is an early intracellular signaling action that can contribute to altered Ca2+ homeostasis characteristic of cyanide neurotoxicity. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
Background information. The IP3R (inositol 1,4,5‐trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca2+ release in virtually all cell types. We have previously demonstrated that caspase‐3‐mediated cleavage of IP3R1 during cell death generates a C‐terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP3R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. Results. In the present study, we demonstrate that expression of the caspase‐3‐cleaved C‐terminus of IP3R1 increased the rate of thapsigargin‐mediated Ca2+ leak and decreased the rate of Ca2+ uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca2+ stores. We detected the truncated IP3R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP3R1 blocked sperm factor‐induced Ca2+ oscillations and induced an apoptotic phenotype. Conclusions. In the present study, we show that caspase‐3‐mediated truncation of IP3R1 enhanced the Ca2+ leak from the ER. We suggest a model in which, in normal conditions, the increased Ca2+ leak is largely compensated by enhanced Ca2+‐uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca2+ leak acts as a feed‐forward mechanism to divert the cell into apoptosis.  相似文献   

8.
Abstract: The direct effect of melatonin and related agonists on Li+-amplified phosphoinositide breakdown was studied in chick brain slices prelabeled with myo-[2-3H]-inositol. The melatonin receptor agonist 6-chloromelatonin (10–100 µM) increased, in a concentration-dependent manner, the accumulation of inositol phosphates (IP) in chick brain slices. This effect of 6-chloromelatonin (10 µM) was rapid as transient increases in IP3/IP4 (maximal increase, 29% at 20 s) and IP2 levels (maximal increase, 36% at 1 min) were observed, followed by a slower but sustained increase in IP1 level (30% at 5 min), when the amount of IP3/IP4 and IP2 had already been decreased to the control level. The phosphoinositide response elicited by 6-chloromelatonin (10 µM) was dependent on the presence of extracellular calcium. Direct stimulation of membrane phospholipase C by 6-chloromelatonin (10 µM) in isolated myo-[2-3H]inositol-prelabeled optic tectum membranes was dependent on the presence of guanosine-5′-O-(3-thio)triphosphate (1 µM), thus suggesting that G protein(s) link melatonin receptor activation to phospholipase C stimulation. The competitive melatonin receptor antagonist luzindole (10–100 µM) inhibited in a concentration-dependent manner the IP1 accumulation stimulated by 6-chloromelatonin (10–100 µM); however, it did not affect the accumulation stimulated by 5-hydroxytryptamine (10 µM). By contrast, methysergide (10 µM) completely inhibited 5-hydroxytryptamine (10 µM)-, but not 6-chloromelatonin (10 µM)-, induced IP1 accumulation. Melatonin receptor agonists increased IP1 accumulation in a concentration-dependent manner reaching different maximal responses. N-Acetyl-5-hydroxytryptamine was more potent than melatonin in increasing IP1 accumulation, suggesting activation of a melatonin receptor site other than the ML-1 melatonin receptor (i.e., N-acetyl-5-hydroxytryptamine ≥ melatonin). In conclusion, these results demonstrate that activation of a melatonin receptor with pharmacological characteristics different from those of the ML-1 subtype leads to activation of the phospholipase C-mediated signal transduction pathway.  相似文献   

9.
Inositol pyrophosphates have emerged as important regulators of many critical cellular processes from vesicle trafficking and cytoskeletal rearrangement to telomere length regulation and apoptosis. We have previously demonstrated that 5-di-phosphoinositol pentakisphosphate, IP7, is at a high level in pancreatic β-cells and is important for insulin exocytosis. To better understand IP7 regulation in β-cells, we used an insulin secreting cell line, HIT-T15, to screen a number of different pharmacological inhibitors of inositide metabolism for their impact on cellular IP7. Although the inhibitors have diverse targets, they all perturbed IP7 levels. This made us suspicious that indirect, off-target effects of the inhibitors could be involved. It is known that IP7 levels are decreased by metabolic poisons. The fact that the inositol hexakisphosphate kinases (IP6Ks) have a high Km for ATP makes IP7 synthesis potentially vulnerable to ATP depletion. Furthermore, many kinase inhibitors are targeted to the ATP binding site of kinases, but given the similarity of such sites, high specificity is difficult to achieve. Here, we show that IP7 concentrations in HIT-T15 cells were reduced by inhibitors of PI3K (wortmannin, LY294002), PI4K (Phenylarsine Oxide, PAO), PLC (U73122) and the insulin receptor (HNMPA). Each of these inhibitors also decreased the ATP/ADP ratio. Thus reagents that compromise energy metabolism reduce IP7 indirectly. Additionally, PAO, U73122 and LY294002 also directly inhibited the activity of purified IP6K. These data are of particular concern for those studying signal transduction in pancreatic β-cells, but also highlight the fact that employment of these inhibitors could have erroneously suggested the involvement of key signal transduction pathways in various cellular processes. Conversely, IP7’s role in cellular signal transduction is likely to have been underestimated.  相似文献   

10.
The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms.  相似文献   

11.
《Life sciences》1994,56(5):PL103-PL108
We studied the effects of the aminosteroid U-73122, a putative phospholipase C (PLC) inhibitor, on carbachol-induced increases in insulin release, [Ca2+]i, and IP3 in β-TC3 cells. Carbachol (0.1–100 μM) increased [Ca2+]i and carbachol (0.1–1000 μM) increased insulin release dose-dependently. Carbachol (100 μM) also increased inositol 1,4,5-trisphosphate (IP3) production. U-73122 (2–12 νM) inhibited the effects of carbachol on [Ca2+]i and insulin release in a dose-dependent manner, and at the highest dose studied (12 μM) it abolished or greatly attenuated all three effects of carbachol. In contrast, U-73343 (12 μM), the analog of U-73122 that does not inhibit PLC, only inhibited the effect of carbachol on [Ca2+]i by 20% and did not inhibit the effect of carbachol on insulin release. Since carbachol increased IP3, [Ca2+]i, and insulin release by activating PLC, these results suggested that U-73122 inhibits phospholipase C-depenent processes in β-TC3 cells.  相似文献   

12.
The aim of this study was to confirm the protective effect of tetrahydropalmatine (THP) against irradiation-induced rat pulmonary endothelial cell apoptosis and to explore the underlying mechanism, with a focus on the calcium-sensing receptor (CaSR)/phospholipase C-γ1 (PLC-γ1) pathway. We established a model of irradiation-induced primary rat pulmonary endothelial cell injury. Cell apoptosis and mitochondrial membrane potential (Δψm) were measured by flow cytometry. The expression of CaSR, cytochrome c, PLC-γ1, reactive oxygen species (ROS) and [Ca2+]i was also determined. Caspase-3 and caspase-9 activities were measured using commercial kits. Inositol triphosphate (IP3) and the production of inflammatory cytokines were detected by enzyme-linked immunosorbent assay. The results showed that THP significantly inhibited irradiation-induced cell apoptosis and intracellular accumulation of ROS. Pretreatment with THP significantly decreased the expression of CaSR, inhibited the CaSR/PLC-γ1 pathway and subsequent [Ca2+]i overload stimulated by irradiation. THP, NPS2390 (inhibitor of CaSR), U73122 (inhibitor of PLC-γ1) and 2-APB (inhibitor of IP3) further decreased cell apoptosis, along with down-regulation of cytochrome c, caspase-3 and caspase-9 activation, disruption of Δψm and the production of inflammatory cytokines. These findings suggest that THP protects primary rat pulmonary endothelial cells against irradiation-induced apoptosis by inhibiting oxidative stress and the CaSR/PLC-γ1 pathway.  相似文献   

13.
Inositol 1,4,5‐trisphosohate (IP3) and its receptors play a pivotal role in calcium signal transduction in mammals. However, no homologs of mammalian IP3 receptors have been found in plants. In this study, we isolated the microsomal fractions from rice cells in suspension culture and further obtained putative IP3‐binding proteins by heparin‐agarose affinity purification. The IP3‐binding activities of these protein fractions were determined by [3H] IP3‐binding assay. SDS‐PAGE and MS analysis were then performed to characterize these proteins. We have identified 297 proteins from the eluates of heparin‐agarose column chromatography, which will provide insight into the IP3 signaling pathways in plants. All MS data have been deposited in the ProteomeXchange with identifier PXD000763 ( http://proteomecentral.proteomexchange.org/dataset/PXD000763 ).  相似文献   

14.
《Gene》1997,190(1):151-156
Receptor-stimulated phosphoinositide (PI) hydrolysis is an important and ubiquitous mechanism of intracellular signaling. Inositol 1,4,5-trisphosphate (IP3), generated by phosphoinositide (PI) hydrolysis, binds to and gates an intracellular Ca2+ channel, the IP3 receptor (IP3R), which is therefore a central component of this signaling cascade. Here we describe the development of a baculovirus (BV)/Sf(S. frugiperda) cell system that can be used to look at IP3R function. Agonist-evoked changes in intracellular Ca2+ levels [Ca2+]i were measured (using Fura2) in Sf cells expressing the gene encoding the muscarinic acetylcholine receptor (vmlAchR). Furthermore, we have constructed a recombinant BV (vlP3R), with the core of the IP3R ligand-binding domain from the Drosophila IP3R, under the polyhedrin promoter. The recombinant protein from such a virus was expected to act as a large ligand sink for IP3, generated by stimulation of vmlAchR. Cells coinfected with recombinant BV carrying the potential dominant-negative vIP3R construct and vmlAchR have been used to assay the modulation of IP3R-mediated Ca2+ release, by the ligand sink.  相似文献   

15.
The blowfly has taste chemosensilla on the labellum. The sensory receptor cells in the chemosensillum are highly specialized for the tastes of sugar, salt and water, respectively. Previously we introduced chromosaponin I (CSI) and glycyrrhizin (GL), as sweet substances for the blowfly, Phormia regina. Application of these triterpenoid saponins induced feeding responses as well as impulses of the sugar taste receptor cell in the LL-type sensillum at a much lower concentration than that of sucrose. In the present paper, we show the involvement of G protein-mediated cascade in the CSI- and GL-responses as well as in sugar responses. CSI activates the sugar signal transduction cascade after penetrating through the membrane. On the other hand, GL exerts dual effects to stimulate the sugar signal transduction possibly by activating it inside the cell and also by interacting with the pyranose sugar receptor site. A non hydrolyzable G protein inhibitor guanosine 5′-O-(2-thiodiphosphate), GDPβS, markedly decreased the responses of the sugar receptor cell to the two triterpenoid saponins as well as the response to sucrose and fructose. These results suggest that CSI and GL are direct activators of G protein.  相似文献   

16.
The calcium-sensing receptors (CaSRs) exist in a variety of tissues and cells. In 2001, Canaff et al. first identified its expression in liver tissue and primary cultured hepatocytes, and demonstrated that GdCl3 (a specific agonist of CaSR) can cause an increase in intracellular calcium and bile flow. However, authors did not elucidate its mechanisms. Therefore, this study sought to detect CaSR expression in BRL cell line, which is derived from buffalo rat liver, and to reveal the cellular signal transduction pathway by which the CaSR activation results in increased intracellular calcium by BRL cells. In this study, the expression and distribution of CaSR were detected by RT-PCR, Western blotting, and immunofluorescence, and the intracellular calcium concentration [Ca2+]i was measured using LCSM. The results showed that CaSR mRNA and protein were expressed in BRL cells and mainly distributed in cell membrane and cytoplasm. Increased extracellular calcium or GdCl3 could increase intracellular calcium concentration and CaSR expression. Moreover, this increase of [Ca2+]i could be inhibited or even abolished by U73122 (a specific inhibitor of PLC), 2-APB (an inhibitor of IP3 receptor), and thapsigargin (an inhibitor of endoplasmic reticulum calcium pump). In conclusion, CaSR is functionally expressed in BRL cells, and activation of CaSR involves in increased intracellular calcium through Gq–PLC–IP3 pathway.  相似文献   

17.
Overactivation of ionotropic glutamate receptors induces a Ca2+ overload into the cytoplasm that leads neurons to excitotoxic death, a process that has been linked to several neurodegenerative disorders. While the role of mitochondria and its involvement in excitotoxicity have been widely studied, the contribution of endoplasmic reticulum (ER), another crucial intracellular store in maintaining Ca2+ homeostasis, is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine (RyR) and IP3 (IP3R) receptors to a neuronal in vitro model of excitotoxicity. NMDA induced a dose-dependent neuronal death, which was significantly decreased by ER-Ca2+ release inhibitors in cortical neurons as well as in organotypic slices. Furthermore, ryanodine and 2APB, RyR and IP3R inhibitors respectively, attenuated NMDA-triggered intracellular Ca2+ increase and oxidative stress, whereas 2APB reduced mitochondrial membrane depolarization and caspase-3 cleavage. Consistent with ER-Ca2+ homeostasis disruption, we observed that NMDA-induced ER stress, characterized here by eIF2α phosphorylation and over-expression of GRP chaperones which were regulated by ER-Ca2+ release inhibitors. These results demonstrate that Ca2+ release from ER contributes to neuronal death by both promoting mitochondrial dysfunction and inducing specific stress and apoptosis pathways during excitotoxicity.  相似文献   

18.
It has been suggested in Arabidopsis thaliana (L.) Heynh. cv. Columbia that, contrary to 30 μM abscisic acid (ABA), 20 μM ABA induces guard cell Ca2+ mobilization through activating phosphoinositide-specific phospholipase C (PI-PLC)-dependent inositol 1,4,5-triphosphate (IP3) production. Here, it was investigated whether Ca2+-dependent protein kinase, CPK3 or CPK6 would mediate ABA-induced stomatal closure downstream of IP3 production. In the knockout cpk3-1 mutant, the PLC inhibitor (U73122) adjusted 20 μM ABA-induced stomatal closure to the extent observed in the knockout cpk6-1 and cpk3-1cpk6-1 mutants and the wild type, whereas, in the wild type, the inhibitor of IP3-induced Ca2+ mobilization, xestospongin C (XeC), adjusted this closure to the extent observed in the cpk3-1 mutant. The Ca2+ buffer, EGTA and XeC positively interacted with the slow anion channel blocker, anthracene-9-carboxylic acid (9-AC) to inhibit 20 μM ABA-induced stomatal closure, which was suppressed in the dexamethasone-inducible AtPLC1 antisense transgene or the knockout cpk3-1, cpk6-1, cpk3-1cpk6-1 and NADPH oxidase atrbohD/F mutants. Discrete concentrations of 9-AC or another slow anion channel blocker (probenecid) negatively interacted with the Ca2+ buffer, BAPTA or the inhibitor of cyclic ADP-ribose-induced Ca2+ mobilization, ruthenium red, to inhibit 30 μM ABAinduced stomatal closure in the wild type but not in the cpk6-1, cpk3-1cpk6-1 and atrbohD/F mutants. Based on so far revealed features of the tested compounds and plant materials, interpretation of the results confirmed that guard cell ABA concentration discriminates between two Ca2+ mediations and outlined that one of them sequentially implicates CPK6, PLC1, a putative IP3 receptor homologue, CPK3, and the slow anion channel, whereas the other one excludes AtPLC1-dependent IP3 production and CPK3.  相似文献   

19.
Inositol 1,4,5-trisphosphate (IP3) is an important second messenger produced via G-protein-coupled receptor- or receptor tyrosine kinase-mediated pathways. IP3 levels induce Ca2+ release from the endoplasmic reticulum (ER) via IP3 receptor (IP3R) located in the ER membrane. The resultant spatiotemporal pattern of Ca2+ signals regulates diverse cellular functions, including fertilization, gene expression, synaptic plasticity, and cell death. Therefore, monitoring and manipulating IP3 levels is important to elucidate not only the functions of IP3-mediated pathways but also the encoding mechanism of IP3R as a converter of intracellular signals from IP3 to Ca2+.  相似文献   

20.
Intracellular calcium ions (Ca2+) have an essential role in the regulation of neurite outgrowth, but how outgrowth is controlled remains largely unknown. In this study, we examined how the mechanisms of neurite outgrowth change during development in chick and mouse dorsal root ganglion neurons. 2APB, a potent inhibitor of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), inhibited neurite outgrowth at early developmental stages, but not at later stages. In contrast, pharmacological inhibition with Ni2+, Cd2+, or dantrolene revealed that ryanodine receptor (RyR)-mediated Ca2+-induced Ca2+ release (CICR) was involved in neurite outgrowth at later stage, but not at early stages. The distribution of IP3R and RyR in growth cones also changed during development. Furthermore, pharmacological inhibition of the Ca2+-calmodulin-dependent phosphatase calcineurin with FK506 reduced neurite outgrowth only at early stages. These data suggest that the calcium signaling that regulates neurite outgrowth may change during development from an IP3R-mediated pathway to a RyR-mediated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号