首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms coat the exterior of most water-exposed interfaces, from the surfaces of sediments and rocks to the interior walls of fluid transport systems and even medical and dental apparatus. Composed of a diverse assemblage of microbial species growing in a matrix of extracellular polymeric substances (EPS), biofilms are well-known for their ability to sorb metals and nucleate mineral phases. In this study, purified alginate, a major polysaccharide component of some algal and bacterial EPS, was studied to ascertain its chemical reactivity towards dissolved cadmium and protons, and thus better constrain its role in overall EPS reactivity. FTIR analysis and compositional constraints based on known molecular structure indicate that alginate’s geochemical behaviour is dominated by a single carboxyl functional group. Correspondingly, potentiometric titration data were best fit using a single functional group acidity constant (pKa) and site concentration of 3.98 ± 0.01 and 1.728 ± 0.02 mol/kg, respectively, which are in agreement with typical carboxyl acidity (pKa 3–6) and carboxyl functional group concentration based on alginate polymer composition. The logarithm of the Cd-carboxyl complexation constant (log K) was determined to be ?0.52 ± 0.22, lower than carboxyl-Cd stability constants reported from independent studies of isolated microbes. Together, these results place important constraints on organic matrix contributions to overall biofilm reactivity.  相似文献   

2.
Microorganisms colonizing surfaces can exude a wide range of substances, generally called Extracellular Polymeric Substances (EPS). While EPS has often been visualized as thick mature strata embedding microbes, the initial phases of EPS production, its structure at the micro- and nanoscale and the microbial wall areas involved in its exudation are less known. In this work we use Atomic Force Microscopy to image EPS produced by the fungus Paxillus involutus on phyllosilicate surfaces. Hyphal tips initially deposit EPS which assumes the shape of a “halo” surrounding hyphae. The fusion of adjacent EPS halos is likely responsible for the creation of EPS monolayers covering mineral surfaces. It is also proposed that a specific region of hyphae initiates the formation of mineral channels produced by fungi. The results presented here permit for the first time to propose a model for the initial stages of EPS accumulation in fungi and filamentous microorganisms in general.  相似文献   

3.
Diatoms and their associated extracellular polymeric substances (EPS) are major constituents of the microalgal assemblages present within sea ice. Yields and chemical composition of soluble and cell‐associated polysaccharides produced by three sea‐ice diatoms, Synedropsis sp., Fragilariopsis curta, and F. cylindrus, were compared. Colloidal carbohydrates (CC) contained heteropolysaccharides rich in mannose, xylose, galactose, and glucose. Synedropsis sp. CC consisted mainly of carbohydrates <8 kDa size, with relatively soluble EPS, compared to high proportions of less‐soluble EPS produced by both Fragilariopsis spp. F. curta colloidal EPS contained high concentrations of amino sugars (AS). Both Fragilariopsis species had high yields of hot bicarbonate (HB) soluble EPS, rich in xylose, mannose, galactose, and fucose (and AS in F. cylindrus). All species had frustule‐associated EPS rich in glucose–mannose. Nutrient limitation resulted in declines in EPS yields and in glucose content of all EPS fractions. Significant similarities between EPS fractions from cultures and different components of natural EPS from Antarctic sea ice were found. Increased salinity (52) reduced growth, but increased yields of EPS in Fragilariopsis cylindrus. Ice formation was inhibited byF. cylindrus, EPS, and by enhanced EPS content (additional xanthan gum) down to ?12°C, with growth rate reduced in the presence of xanthan. Differences in the production and composition of EPS between Synedropsis sp. and Fragilariopsis spp., and the association between EPS, freezing and cell survival, supports the hypothesis that EPS production is a strategy to assist polar ice diatoms to survive the cold and saline conditions present in sea ice.  相似文献   

4.
To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS.  相似文献   

5.
6.
The effects of nonmetabolic bacterial cell wall adsorption and the presence of bacterial exudates on the precipitation of mineral phases from solution is not well constrained experimentally. In this study, we measured the extent of Hg(II) removal from solution, in the presence and absence of nonmetabolizing cells of Bacillus subtilis in both Cl-free and Cl-bearing systems with Hg concentrations ranging from undersaturation to supersaturation with respect to montroydite [HgO(s)]. Total Hg molalities ranged from 10?5.00 to 10?2.00 M at pH 4.50 and 7.00; the ionic strength of the experiments was kept constant using 0.01 M NaClO4, and the wet mass of bacteria was held constant at 5 g/L for each biotic experiment.

The biotic systems exhibited enhanced Hg(II) removal from solution relative to the abiotic controls in undersaturated conditions. However, thermodynamic modeling of the experimental systems strongly suggests that all of this Hg removal can be ascribed to Hg adsorption onto cell envelope functional groups. There was no evidence for enhanced Hg removal due to precipitation in bulk solutions that were undersaturated with respect to the solid phase. Under the highest total Hg concentrations studied in both the Cl-free and Cl-bearing systems, bacteria inhibit precipitation, maintaining high concentrations of Hg in solution. Cell-free, exudate-bearing control experiments suggest that aqueous complexation between Hg and the bacterially-produced exudates accounts for at least some of the precipitation inhibition. However, a comparison of total available binding sites on the exudates with the concentration of Hg in solution suggests that aqueous complexation alone can not account for the observed elevated final aqueous Hg concentrations in solution, and that the exudates likely exert a kinetic inhibition on the precipitation reaction as well.  相似文献   

7.
从新疆甜瓜根际土壤中分离到1株甜瓜细菌性斑点病拮抗放线菌P-13, 根据其形态学、生理特征和16S rRNA序列分析, 鉴定该菌株为娄彻氏链霉菌(Streptomyces rochei)。琼脂扩散法生物活性研究表明, 其发酵液对细菌性果腐病菌(Acidovorax avenae subsp. citrull)BFB、细菌性角斑病菌(Pseudomonas syringae pv. Lachrymans)P4的抑菌圈直径分别为19 mm和17 mm以上; 发酵液中抑菌物质主要为胞外代谢物, 不溶于石油醚, 乙醚, 乙酸乙酯等有机溶剂。在100°C处理10 min、pH 6处理6 h或紫外线照射7 h, 该物质抑菌活性不变。纸层析结果表明, 该物质主要为碱性水溶性物质。  相似文献   

8.
9.
Ze Hua Dong  Tao Liu 《Biofouling》2013,29(5):487-495
Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.  相似文献   

10.
11.
Innovative microanalytical methods are valuable tools in geomicrobiology. They often require the use of dried samples, demanding a challenging sample preparation. Since geomicrobiological samples typically have a strongly heterogeneous composition, choosing a preparation method is not straightforward. We therefore compared how different drying methods (critical point drying, hexamethyldisilazane drying, air drying and freeze drying) influence the structure of bacterial cell-mineral aggregates. Each method proved suitable for a specific purpose, but none was able to completely preserve the sample structure. Additional information was obtained on surface alterations by sputter coating and on preservation of extracellular polymeric substances during resin embedding.  相似文献   

12.
In this study, the impact of the exopolysaccharides Pel and Psl on the cell surface electron donor-electron acceptor (acid-base) properties and adhesion to quartz sand was investigated by using Pseudomonas aeruginosa PAO1 and its isogenic EPS-mutant strains Δpel, Δpsl and Δpelpsl. The microbial adhesion to hydrocarbon (MATH) test and titration results showed that both Pel and Psl contribute to the surface hydrophobicity of the cell. The results of contact angle measurement, however, showed no correlation with the cell surface hydrophobicity measured by the MATH test and the titration method. Packed-bed column experiments indicated that the exopolysaccharides Pel and Psl are involved in the initial cell attachment to the sand surface and the extent of their impact is dependent on the ionic strength (IS) of the solution. Overall, the Δpelpsl double mutant had the lowest adhesion coefficient to sand compared with the wild-type PAO1, the Δpel mutant and the Δpsl mutant. It is hypothesized that in addition to bacterial surface hydrophobicity and DLVO forces, other factors, eg steric repulsion caused by extracellular macromolecules, and cell surface appendages (flagella and pili) also contribute significantly to the interaction between the cell surface and a sand grain.  相似文献   

13.
Subsurface geotechnical data from a cemented tailings sand site in eastern India indicated that the cementation was at least partially biogenic. Three strains of aerobic soil-residing bacteria from this site exhibited capabilities of producing extracellular polymeric substance, calcite and struvite when grown in minimal mineral salt media. These strains grew easily under a variety of physical, chemical and nutritional conditions. Drained triaxial testing of loose sand samples indicated that they became stronger upon hosting these strains. No details on EPS and calcite production of these isolates and the effects of these products on soil behavior were found in the literature.  相似文献   

14.
Azospirillum brasilense cells deprived of capsular exopolysaccharides completely lost their ability to bind wheat germ agglutinin (WGA) and much of their ability to attach to wheat seedling roots. The decapsulation of bacterial cells by washing them with a NaCl solution led to an increase in the relative hydrophobicity of the cell surface. The pretreatment of wheat seedling roots with N-acetyl-D-glucosamine (GlcNAc) or the GlcNAc-containing polysaccharide complexes stripped from Azospirillum cells reduced their attachment to the roots. Under the experimental conditions used (3-h incubation of wheat seedling roots with exponential-phase azospirilla), bacterial adsorption is mainly driven by the specific mechanisms attachment of the cells to the roots, whose operation is due to the capsular polysaccharide components and the WGA present on the wheat seedling roots.  相似文献   

15.
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic strains of the bacterium Burkholderia cepacia with different extracellular polymeric substance (EPS) producing capacities, viz. a wild-type cepacian EPS producer PC184 and its mutant strains PC184rml with reduced EPS production and PC184bceK with a deficiency in EPS production. Adhesion experiments conducted in a parallel-plate flow chamber demonstrated that, in the absence of cranberry juice, strain PC184 had a significantly higher adhesive capacity compared to the mutant strains. In the presence of cranberry juice, the adhesive capacity of the EPS-producing strain PC184 was largely reduced, while cranberry juice had little impact on the adhesion behavior of either mutant strain. Thermodynamic modeling supported the results from adhesion experiments. Surface force apparatus (SFA) and scanning electron microscope (SEM) studies demonstrated a strong association between cranberry juice components and bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to the EPS and impairing the adhesive capacity of the cells, which provides an insight into the development of novel treatment strategies to block the biofilm formation associated with bacterial infection.  相似文献   

16.
The integrity of biofilms on voice prostheses used to rehabilitate speech in laryngectomized patients causes unwanted increases in airflow resistance, impeding speech. Biofilm integrity is ensured by extracellular polymeric substances (EPS). This study aimed to determine whether synthetic salivary peptides or mucolytics, including N-acetylcysteine and ascorbic acid, influence the integrity of voice prosthetic biofilms. Biofilms were grown on voice prostheses in an artificial throat model and exposed to synthetic salivary peptides, mucolytics and two different antiseptics (chlorhexidine and Triclosan). Synthetic salivary peptides did not reduce the air flow resistance of voice prostheses after biofilm formation. Although both chlorhexidine and Triclosan reduced microbial numbers on the prostheses, only the Triclosan-containing positive control reduced the air flow resistance. Unlike ascorbic acid, the mucolytic N-acetylcysteine removed most EPS from the biofilms and induced a decrease in air flow resistance.  相似文献   

17.
The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (<1 kDa) and fewer high-MW compounds (>100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.  相似文献   

18.
Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.  相似文献   

19.
In this study, we compared the adsorption of the gram-positive bacterium Bacillus subtilis with adsorption of the gram-negative bacterium Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains as a function of pH and bacteria: mineral mass ratio. We studied metabolically-inactive cells in order to focus on the initial bacterial attachment mechanisms. The data show that the presence of Fe-oxyhydroxide-coatings on quartz surfaces significantly enhances the adsorption of bacteria and that in general the extent of adsorption decreases with increasing pH and with decreasing bacteria: mineral mass ratio. B. subtilisadsorbs to a greater extent than does P. mendocina onto the surface of the Fe-coated quartz. The adsorption behavior appears to be controlled by the overall surface charge of both bacterial and mineral surfaces. We model the adsorption data using a semi-empirical chemical equilibrium model that accounts for the site speciation of the adsorbing surfaces. Models describing bacterial adsorption to Fe-oxyhydroxide-coated quartz can account for changes in pH and bacteria: mineral mass ratio using one set of equilibrium constants.  相似文献   

20.
Cadmium extraction, sorption, and immobilization seem to be the effective mechanisms in detoxification of Cd-contaminated soil. Humic substances present in soils may play an important role both in controlling the negative effects of pollution with Cd and in stabilizing soil enzymes. In this context, we have compared the effects of humic substances on soil protease activities in the presence and absence of Cd in forest and cultivated field soil samples. The samples were taken from surface soils of Andosols in a single upland area of the Kanto district in Japan. Humic substances extracted from the two soils showed differences in elemental composition, the degree of condensation of aromatic groups, and the proportions of major functional groups. Compared with the control soil samples, those with added humic substances showed a significant increase in protease activities, even in the presence of Cd (10 and 50 mg Cd kg?1 soil). However, the addition of Cd decreased the protease activities, protein contents, and soil pH in both soil samples at each of the two levels of humic substance fortification (+5% and +10%). Moreover, protease activities showed significant negative correlation with exchangeable Cd, but adding humic substances did not lead to a reduction in either sample. Thus, although the addition of humic substances increased and stabilized protease activities, it did not lead to a clear reversal of enzyme inhibition by Cd. The obtained results indicate that in both soil samples the humic substances used in this study did not have sufficient affinity to adsorb Cd, and the impact on enzyme activities depends on the difference in chemical characteristics of the added organic matter, as suggested by the difference in enhancement of protease activities between forest and cultivated field soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号