首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.  相似文献   

2.
3.
4.
单核细胞增生李斯特菌(Listeria monocytogenes,Lm)是一种重要的革兰氏阳性食源性致病菌,它能在大多数活性或非活性固体表面形成生物被膜,从而使抗逆性大大增强并且难以清除,给食品行业造成很大困扰。Sig B(σB)作为革兰氏阳性菌中主要的压力应答因子,在Lm生物被膜形成中起着重要作用,而Rsb U是单核细胞增生李斯特菌Sig B操纵子中的主要信号(能量和物理化学信号)传导蛋白。为检测Rsb U在Lm生物被膜形成中的作用以及与Sig B的关系,本实验构建了rsb U和sig B基因单缺失及双缺失突变株,比较在不同温度(25℃和37℃)和营养环境(营养丰富的BHI培养基和营养贫乏的MEM基础培养基)下,野生株和突变株生物被膜形成能力的差异。结果表明,缺失Rsb U和Sig B显著降低Lm在不同温度和培养基中生物被膜的形成能力;低温(25℃)和贫瘠的营养条件(MEM)更有利于Rsb U传递压力信号激活Sig B,从而作用Lm生物被膜的形成。  相似文献   

5.
目的:以粪肠球菌为研究对象,探讨粪肠球菌基因srtA(转肽酶A编码基因)、esp(肠球菌表面蛋白)与粪肠球菌生物被膜形成早期的相关性。方法:用逆转录PCR与实时荧光定量PCR方法对生物被膜和浮游菌组细菌srtA、esp两种与生物被膜形成早期相关的基因其表达进行检测,并进行统计学分析。结果:srtA、esp基因与粪肠球生物被膜菌早期形成密切相关。生物被膜菌组srtA、esp表达量分别是浮游菌组的7.9与13.5倍。结论:srtA、esp基因与粪肠球生物被膜菌形成早期密切相关,可能是生物被膜早期形成的上调因子。  相似文献   

6.

A study was made of the use of cellulase to inhibit biofilm formation by a pathogenic bacterium commonly found in medical implants. A Pseudomonas aeruginosa biofilm was grown on glass slides in a parallel flow chamber for 4 d with glucose as the nutrient source. Biofilm development was assessed by measuring the colony forming units (CFU) and biomass areal density. Biofilm was grown at pH 5 and 7 in the presence of three different cellulase concentrations, 9.4, 37.6 and 75.2 units mlm 1. In addition, a control study using deactivated cellulase was performed. The results show that cellulase is effective in partially inhibiting biomass and CFU formation by P. aeruginosa on glass surfaces. The effect of cellulase depended on concentration and was more effective at pH 5 than pH 7. The experiment was further extended by investigating the effect of cellulase on the apparent molecular weight of purified P. aeruginosa exopolysaccharides (EPS). The observation of EPS using size exclusion chromatography showed a decrease in apparent molecular weight when incubated with enzyme. An increase in the amount of reducing sugar with time when the purified EPS were incubated with enzyme also supports the hypothesis that cellulase degrades the EPS of P. aeruginosa. While cellulase does not provide total inhibition of biofilm formation, it is possible that the enzyme could be used in combination with other treatments or in combinations with other enzymes to increase effectiveness.  相似文献   

7.
Bacillus cereus is a foodborne pathogen and cause a frequent problem due to the biofilms forming in equipment of food production plants. Autoinducer-2 (AI-2) involved in interspecies communication, plays a role in the biofilm formation of B. cereus. In this study, biofilm formation by thirty-nine B. cereus strains isolated from foods produced in Korea was determined. To investigate the effect of AI-2 on biofilm formation by B. cereus SBC27, which had the highest biofilm-forming ability, biofilm densities formed after addition of the AI-2 from Staphylococcus aureus and Escherichia coli were analysed. As a result, it was found that the quorum sensing molecule AI-2 could induce biofilm formation by B. cereus within 24 h, but it may also inhibit biofilm formation when more AI-2 is added after 24 h. Thus, these results improve our understanding of biofilm formation by food-derived B. cereus and provide clues that could help to reduce the impact of biofilms, the biggest problem in food processing environments, which has an impact on public health as well as the economy.  相似文献   

8.
内生菌与植物的相互作用:促生与生物薄膜的形成   总被引:6,自引:0,他引:6  
易婷  缪煜轩  冯永君 《微生物学通报》2008,35(11):1774-1780
植物内生菌由于其独特的生态学地位而广受关注,近年来有关植物内生菌与宿主相互作用的研究取得了很大进展.本文综述了植物内生菌通过分泌促生物质、拮抗病原菌等实现与宿主共生互作,同时植物为内生菌提供适宜的黏附表面,使其形成以生物薄膜(biofilm)为主要形式的多细胞聚集体结构以更好地适应周围的生存环境,从而更加高效地对植物产生促生作用.本文论述了内生菌在与植物的互作中形成的多细胞聚集结构在抵抗非生物胁迫方面的独特生理及生态学意义,结合水稻内生成团泛菌YS19形成多细胞聚集体symplasmata现象及其生物学效应,对未来有关植物内生菌的研究方向提出了一些看法.  相似文献   

9.
生物被膜对于细菌抵御外界环境的侵害具有重要的意义, 其形成和发展过程受到很多基因的调控和影响。本文利用mini-Tn10转座系统对野生型解淀粉芽孢杆菌NK10.BAhjaWT进行突变库的构建并随机选择400个转化子进行验证, 突变效率达到90%以上。从突变库中筛选到4株生物被膜缺陷株。经过鉴定, 上述突变株citB、citG、gpsA和yvfB基因发生插入突变。其中citB、citG和gpsA均与能量代谢相关, yvfB功能未知。本实验证明mini-Tn10转座系统对于芽孢杆菌突变库的构建具有高效和稳定的  相似文献   

10.
A growing body of evidence indicates that MmpL (mycobacterial membrane protein large) transporters are dedicated to cell wall biosynthesis and transport mycobacterial lipids. How MmpL transporters function and the identities of their substrates have not been fully elucidated. We report the characterization of Mycobacterium smegmatis MmpL11. We showed previously that M. smegmatis lacking MmpL11 has reduced membrane permeability that results in resistance to host antimicrobial peptides. We report herein the further characterization of the M. smegmatis mmpL11 mutant and identification of the MmpL11 substrates. We found that biofilm formation by the M. smegmatis mmpL11 mutant was distinct from that by wild-type M. smegmatis. Analysis of cell wall lipids revealed that the mmpL11 mutant failed to export the mycolic acid-containing lipids monomeromycolyl diacylglycerol and mycolate ester wax to the bacterial surface. In addition, analysis of total lipids indicated that the mycolic acid-containing precursor molecule mycolyl phospholipid accumulated in the mmpL11 mutant compared with wild-type mycobacteria. MmpL11 is encoded at a chromosomal locus that is conserved across pathogenic and nonpathogenic mycobacteria. Phenotypes of the M. smegmatis mmpL11 mutant are complemented by the expression of M. smegmatis or M. tuberculosis MmpL11, suggesting that MmpL11 plays a conserved role in mycobacterial cell wall biogenesis.  相似文献   

11.
生物被膜分散方式的研究进展   总被引:1,自引:0,他引:1  
临床上生物被膜与感染的慢性迁延不愈密切相关,而生物被膜菌的分散又会造成感染的反复急性发作,给临床感染的有效控制带来很大困难。生物被膜菌的分散过程受到了遗传和环境等多因素的调控,主要是通过蜂式分散、块式分散和毯式分散3种形式来实现的。深入进行生物被膜基础研究对改变目前临床感染治疗的窘境有重大意义。  相似文献   

12.
目的:建立激光扫描共聚焦显微镜观察生物膜形成过程的方法,为进一步研究生物膜的形成机制奠定基础。方法:以临床分离金葡菌X428为研究对象,在盖玻片上形成生物膜,分别于接种后的4、8、12、16、24和48h取出玻片,采用免疫荧光技术标记多糖和细菌,激光扫描共聚焦显微镜(CLSM)观察生物膜形成情况。结果:取得了生物膜形成过程的不同时间点的CLSM图像,4h时细菌在盖玻片上粘附形成小菌落,8h和12h细菌聚集成簇,多糖基质产生并逐渐增多,至16h形成成熟生物膜结构;24h和48h生物膜已经播散,其结构变小。结论:应用免疫荧光技术和激光扫描共聚焦显微镜技术研究生物膜形成过程是一种简便可行的方法。  相似文献   

13.
Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applied a recently developed optical biofilm sensor to quasicontinuously analyze marine biofilm dynamics in situ. Using this technique in combination with microscope-assisted imaging, we investigated biofilm formation from its beginning to mature multispecies biofilms. In contrast to laboratory studies on biofilm formation, a smooth transition from initial attachment to colony formation and exponential growth could not be observed in the marine environment. Instead, initial attachment was followed by an adaptation phase of low growth and homogeneously distributed solitary bacterial cells. Moreover, we observed a diurnal variation of biofilm signal intensity, suggesting a transient state of biofilm formation of bacteria. Overall, the biofilm formation dynamics could be modeled by three consecutive development stages attributed to initial bacterial attachment, bacterial growth, and attachment and growth of unicellular eukaryotic microorganisms. Additional experiments showed that the presence of seaweed considerably shortened the adaptation phase in comparison with that on control surfaces but yielded similar growth rates. The outlined examples highlight the advantages of a quasicontinuous in situ detection that enabled, for the first time, the exploration of the initial attachment phase and the diurnal variation during biofilm formation in natural ecosystems.  相似文献   

14.
15.
To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections,orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.  相似文献   

16.
Biofilm formation on stainless steel samples immersed in cooling water has been evaluated by exposing metal samples to cooling seawater for 30 days. Anaerobic bacteria were then at 1.6 × 106/cm2, with sulphate-reducing species predominating. Aerobic bacteria and fungi were 2600 and 140/cm2, respectively. After 60 days, numbers of aerobic microorganisms remained constant whereas the count of anaerobic microorganisms had increased to 1.8×109/cm2. Scanning electron microscopy showed the presence of morphologically different microorganisms in deposits and as a mucilaginous net. No signs of corrosion were detected on the stainless steel surface.The authors are with the Departamento de Engenharia Bioquimica Centro de Tecnologia, Bloco E. Universidade Federal do Rio de Janeiro Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil  相似文献   

17.
引发医院感染表皮葡萄球菌生物被膜的检测   总被引:6,自引:0,他引:6  
为了解引发医院感染的表皮葡萄球菌中ica操纵元的存在与生物被膜的产生的关系及其对抗生素敏感性的影响,收集了引发医院感染的表葡萄球菌106株,采用定量和定性法检测生物被膜的产生,PCR法检测ica操纵元基因的存在以及测量细菌对红霉素(ERY)、氨苄青霉素(AMP)、头孢西丁(FOX)、头孢曲松(CRO)、替考拉宁(TEC)、环丙沙星(CIP)、四环素(TCY)、复方新诺明(SXT)、万古霉素(VAN)的最小抑菌浓度(MIC);106株表皮葡萄球菌分离株中,有33株检测出icaABC(31.1%);ica^+菌中产膜菌的检出率高于ica^+菌(P=0.001);葡萄糖和NaCl可提高产膜菌的检出率;ica^+浮游菌对红霉素,头孢西丁和头孢曲松的耐药率高于ica^+浮游菌株,但对氨苄青霉素,环丙沙星,四环素和复方新诺明的耐药率与ica^+菌相似;ica位点基因的存在与引发表葡菌医院感染密切相关,但生物被膜内菌耐药机制还需进一步研究。  相似文献   

18.
Cryptococcus neoformans is an opportunistic fungal pathogen with a propensity to infect the central nervous system of immune compromised individuals causing life-threatening meningoencephalitis. Cryptococcal biofilms have been described as a protective niche against microbial predators in nature and shown to enhance resistance against antifungal agents and specific mediators of host immune responses. Based on the potential importance of cryptococcal biofilms to its survival in the human host and in nature, these studies were designed to investigate those factors that mediate biofilm formation by C. neoformans. We observed that C. neoformans preferentially grew as planktonic cells when cultured under specific conditions designed to mimic growth within host tissues (37°C, neutral pH, and ~5% CO2) or phagocytes (37°C, acidic pH, and ~5% CO2) and as biofilms when cultured under conditions such as those encountered in the external environment (25–37°C, neutral pH, and ambient CO2). Altogether, our studies suggest that conditions similar to those observed in its natural habitat may be conducive to biofilm formation by C. neoformans.  相似文献   

19.
Arginine decarboxylases (ADCs; EC 4.1.1.19) from four different protein fold families are important for polyamine biosynthesis in bacteria, archaea, and plants. Biosynthetic alanine racemase fold (AR-fold) ADC is widespread in bacteria and plants. We report the discovery and characterization of an ancestral form of the AR-fold ADC in the bacterial Chloroflexi and Bacteroidetes phyla. The ancestral AR-fold ADC lacks a large insertion found in Escherichia coli and plant AR-fold ADC and is more similar to the lysine biosynthetic enzyme meso-diaminopimelate decarboxylase, from which it has evolved. An E. coli acid-inducible ADC belonging to the aspartate aminotransferase fold (AAT-fold) is involved in acid resistance but not polyamine biosynthesis. We report here that the acid-inducible AAT-fold ADC has evolved from a shorter, ancestral biosynthetic AAT-fold ADC by fusion of a response regulator receiver domain protein to the N terminus. Ancestral biosynthetic AAT-fold ADC appears to be limited to firmicute bacteria. The phylogenetic distribution of different forms of ADC distinguishes bacteria from archaea, euryarchaeota from crenarchaeota, double-membraned from single-membraned bacteria, and firmicutes from actinobacteria. Our findings extend to eight the different enzyme forms carrying out the activity described by EC 4.1.1.19. ADC gene clustering reveals that polyamine biosynthesis employs diverse and exchangeable synthetic modules. We show that in Bacillus subtilis, ADC and polyamines are essential for biofilm formation, and this appears to be an ancient, evolutionarily conserved function of polyamines in bacteria. Also of relevance to human health, we found that arginine decarboxylation is the dominant pathway for polyamine biosynthesis in human gut microbiota.  相似文献   

20.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号