首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
夏石头  李昕 《植物学报》2019,54(3):288-292
NLR蛋白是存在于植物和动物中的一个免疫受体大家族,具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆,但其激活机制仍不清楚,至今仍未获得一个完整的NLR蛋白结构。最近,柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构,研究成果以两篇论文形式发表在"科学"杂志上,填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展,讨论了NLR免疫信号转导研究领域尚需解决的问题。  相似文献   

2.
为适应丰富多变的生存环境, 植物逐渐进化出一套复杂的免疫系统来抵抗病原菌的侵染。核苷酸结合的富含亮氨酸重复蛋白(NLR)作为植物体内普遍存在的一类抗性(R)蛋白, 对植物的抗病性具有重要调控作用。该文综述了NLR蛋白结构、信号转导以及对植物抗病的调控作用近几年的研究进展。  相似文献   

3.
植物抗病蛋白研究进展   总被引:1,自引:1,他引:0  
闫佳  刘雅琼  侯岁稳 《植物学报》2018,53(2):250-263
为了应对外界复杂的环境变化, 植物进化出一套复杂而精细的免疫应答调控机制。植物抗病蛋白能够特异地识别病原微生物分泌的效应蛋白, 触发免疫响应以对抗病原微生物的侵扰。该文综述了植物抗病蛋白的结构与功能及对病原菌的识别方式、在免疫响应过程中抗病蛋白的动态平衡机制及其介导的防御反应信号转导。开展植物抗病蛋白研究可为定向培育抗病作物奠定理论基础。  相似文献   

4.
植物抗病基因克隆的进展   总被引:4,自引:0,他引:4  
抗病基因是抗病分子生物学和抗病育种的基因,本文介绍了近几年植物抗病基因克隆的进展,抗病基因克隆的新策略以及抗病基因结构特点与抗病机制的研究进展,讨论了抗病基因克隆的应用前景。  相似文献   

5.
植物抗病的分子生物学基础   总被引:11,自引:0,他引:11  
随着分子生物学的不断发展,人们已逐步了解植物寄主与病原之间的相互作用及植物抗病的分子机理。植物受病原侵染后出现两种类型的卫反应:局部防卫反应(过敏反应)和系统获得性防卫反应。本质素、植保素、活性氧、水杨酸等物质已被证明了在植物抗病中起了重要作用。抗病基因和防卫基因的诱导表达构成了防卫反应的遗传基础。本文综述了近年来抗病的分子生物学研究进展,并对其发展和应用前景作了展望。  相似文献   

6.
植物抗病基因工程的研究进展   总被引:1,自引:0,他引:1  
对植物抗病基因工程的原理、抗病基因、转化方法等方面的进展进行了综述,并对抗病基因工程的应用前景做了展望。  相似文献   

7.
植物抗病基因克隆与功能研究进展   总被引:3,自引:0,他引:3  
李文凤  牛永春  吴立人 《生命科学》2001,13(4):151-153,150
植物抗病基因(R基因)是分子植物病理学和植物基因工程研究的热点之一,R基因的克隆及其在抗病反应中的功能研究为揭示植物抗病机制和有效-控制植物病害奠定了基础,本文介绍了R基因的成功克隆方法和克隆新策略,对R基因编码产物的功能进行了分类分析,并对通过遗传工程途径发展R基因介导的抗病植物新品种进行了展望。  相似文献   

8.
活性氧与植物抗病反应   总被引:39,自引:0,他引:39  
活性氧的产生是植物抗病最早期的反应之一,称为氧化跃变。本文介绍了植物抗病反应中氧化跃变的生理作用、可能的产生机制、信号传导途径以及与胞外碱性化的关系。  相似文献   

9.
植物抗病信号传导研究的现状和展望   总被引:3,自引:0,他引:3  
王钧 《生命的化学》1995,15(5):11-15
植物抗病信号传导研究的现状和展望王钧(中国科学院上海植物生理研究所,上海200032)关键词植物抗病信号传导,抗病基因植物在抵御病原侵染时发生多种防卫反应。感病时这些反应或不发生,或在强度和速度上比抗病时的防卫反应差。感抗反应的差异,不在防卫基因的有...  相似文献   

10.
植物抗病基因的研究进展   总被引:6,自引:0,他引:6  
近年来,已有10多个植物抗病基因被克隆并定序。植物抗病基因编码的蛋白,大多含有富氨酸重复单位(LRR)和核苷酸结合位点(NBS)等结构。在植物与病原物的互作中,这些蛋白可作为受体识别由病原物无毒基因编码的激发子,从而激发一系列防卫反应,使植物表现出抗病性。克隆的植物抗病基因可用于培育基因工程植株而大大加快育种速度。本文对目前植物抗病基因研究中存在的问题及发展前景也进行了探讨。  相似文献   

11.
  相似文献   

12.
13.
Plants rely on different immune receptors to recognize pathogens and defend against pathogen attacks. Nucleotide‐binding domain and leucine‐rich repeat (NLR) proteins play a major role as intracellular immune receptors. Their homeostasis must be maintained at optimal levels in order to effectively recognize pathogens without causing autoimmunity. Previous studies have shown that the activity of the ubiquitin‐proteasome system is essential to prevent excessive accumulation of NLR proteins such as Suppressor of NPR1, Constitutive 1 (SNC1). Attenuation of the ubiquitin E3 ligase SCFCPR1 (Constitutive expressor of Pathogenesis Related genes 1) or the E4 protein MUSE3 (Mutant, SNC1‐Enhancing 3) leads to NLR accumulation and autoimmunity. In the current study, we report the identification of AtCDC48A as a negative regulator of NLR‐mediated immunity. Plants carrying Atcdc48A‐4, a partial loss‐of‐function allele of AtCDC48A, exhibit dwarf morphology and enhanced disease resistance to the oomycete pathogen Hyaloperonospora arabidopsidis (H.a.) Noco2. The SNC1 level is increased in Atcdc48A‐4 plants and AtCDC48A interacts with MUSE3 in co‐immunoprecipitation experiments, supporting a role for AtCDC48A in NLR turnover. While Arabidopsis contains four other paralogs of AtCDC48A, knockout mutants of these genes do not show obvious immunity‐related phenotypes, suggesting functional divergence within this family. As an AAA‐ATPase, AtCDC48A likely serves to process the poly‐ubiquitinated NLR substrate for final protein degradation by the 26S proteasome.  相似文献   

14.
Plants have evolved a sophisticated immune system in order to recognize and respond to microbes in their environments. Nucleotide-binding leucine-rich repeat (NLR) proteins detect the presence of specific effector molecules delivered into host cells by pathogens and activate strong defence responses. However, as excessive accumulation of NLRs can result in inappropriate immune responses, their abundance must be tightly regulated. Targeted degradation of NLRs through the ubiquitin proteasome pathway is an important mechanism to limit NLR accumulation. Mutations that perturb NLR degradation can cause autoimmune phenotypes. In this study, we show that the proteasome regulator PTRE1 also contributes to NLR degradation. ptre1 mutant plants exhibit increased defence marker gene expression and enhanced disease resistance against virulent pathogens. The stability of the NLR, SUPPRESSOR OF npr1-1 CONSTITUTIVE 1 (SNC1) is also increased in the ptre1 mutant. Although the mouse homologue of PTRE1 was reported to interact with a Cell Division Control protein 48 (CDC48) homologue in vitro (Clemen et al., 2015), we only observed interaction between PTRE1 and AtCDC48A in a split luciferase assay, but not in co-immunoprecipitation. In addition, a related Arabidopsis protein PTRE1h shares partial redundancy with PTRE1. Together, PTRE1 acts as a negative regulator of plant immunity partly by facilitating the degradation of immune receptors such as SNC1.  相似文献   

15.
Intracellular nucleotide-binding leucine-rich repeat (NLR)-type immune receptors are a fundamental part of plant immune systems. As infection occurs at foci, activation of immune responses is typically non-uniform and non-synchronized, hampering the systematic dissection of their cellular effects and determining their phasing. We investigated the potato NLR Rx1 using the CESSNA (Controlled Expression of effectors for Synchronized and Systemic NLR Activation) platform. CESSNA-mediated Potato virus X coat protein (CP) expression allowed the monitoring of Rx1-mediated immune responses in a quantitative and reproducible manner. Rx1 was found to trigger a reactive oxygen species (ROS) burst and ion leakage within 1 h and a change in autofluorescence within 2 h after the induction of CP production. After 2 h, HIN1 expression was increased and single-stranded DNA (ssDNA) damage and loss of cellular integrity became apparent, followed by double-stranded DNA (dsDNA) damage after 3 h and increased PR-1a, LOX, ERF1 and AOX1B expression and cell death at 4 h. Nuclear exclusion of Rx1 resulted in increased basal levels of ROS and permitted Rx1 activation by an Rx1-breaking CP variant. In contrast, nuclear-targeted Rx1 showed diminished basal ROS levels, and only avirulent CP could trigger a compromised ROS production. Both nuclear-excluded and nuclear-targeted Rx1 triggered a delayed ion leakage compared with non-modified Rx1, suggesting that ion leakage and ROS production originate from distinct signalling pathways. This work offers novel insights into the influence of Rx1 localization on its activity, and the interplay between Rx1-triggered processes.  相似文献   

16.
Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that depends in part on intracellular Nucleotide‐binding, Leucine rich‐Repeat (NLR) immune receptors that activate defense responses upon detection of pathogen‐derived effectors. Most “sensor” NLRs that detect effectors require the activity of “helper” NLRs, but how helper NLRs support sensor NLR function is poorly understood. Many Solanaceae NLRs require NRC (NLR‐Required for Cell death) class of helper NLRs. We show here that Rpi‐amr3, a sensor NLR from Solanum americanum, detects AVRamr3 from the potato late blight pathogen, Phytophthora infestans, and activates oligomerization of helper NLRs NRC2 and NRC4 into high‐molecular‐weight resistosomes. In contrast, recognition of P. infestans effector AVRamr1 by another sensor NLR Rpi‐amr1 induces formation of only the NRC2 resistosome. The activated NRC2 oligomer becomes enriched in membrane fractions. ATP‐binding motifs of both Rpi‐amr3 and NRC2 are required for NRC2 resistosome formation, but not for the interaction of Rpi‐amr3 with its cognate effector. NRC2 resistosome can be activated by Rpi‐amr3 upon detection of AVRamr3 homologs from other Phytophthora species. Mechanistic understanding of NRC resistosome formation will underpin engineering crops with durable disease resistance.  相似文献   

17.
《Cell host & microbe》2020,27(3):405-417.e6
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

18.
IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein−protein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号