首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of isolated hepatocytes containing normal Ca2+ levels with angiotensin II, vasopressin or A23187 caused significant inhibition of the cAMP response to glucagon. Angiotensin II also inhibited cAMP accumulation induced by either glucagon or epinephrine in Ca2+-depleted hepatocytes. When submaximal doses of hormone were employed such that cell cAMP was elevated only 3-4-fold (approximately 2 pmol cAMP/mg wet wt cells) inhibition by angiotensin II was correlated with a decrease in phosphorylase activation. The data demonstrate that inhibition of hepatic cAMP accumulation results in reduced metabolic responses to glucagon and epinephrine and do not support the contention that the hepatic actions of glucagon are independent of cAMP.  相似文献   

2.
The effects of 10(-10) to 10(-7) M glucagon on cAMP, phosphorylase a, cell calcium, and glucose production, and glucagon interactions with epinephrine were studied in isolated hepatocytes from adult male and female rats. At physiological concentrations (10(-10) - 10(-9) M), glucagon activated phosphorylase by increasing cAMP and not by raising the cytosolic free calcium. At supra-physiologic concentrations (and in the male only), glucagon slightly increased the cytosolic free calcium, the fractional efflux of calcium, and, after 2 h, decreased the cell calcium content. Exposure of hepatocytes to the simultaneous administration of 10(-9) M glucagon and 10(-7) M epinephrine resulted in a prolongation of the activation of phosphorylase a and a greater release of glucose from glycogen stores than exposure to either agonist alone. In the male, the effects of low concentrations of the two hormones on phosphorylase a activity were additive. Cytosolic free calcium was increased by 10(-6) M epinephrine from 280 to 500 nM while physiological concentrations of glucagon did not change it. In these intact cells, there was no evidence of an alpha 2-adrenergic inhibition of adenyl cyclase and no indication that cAMP depresses the rise in cell calcium induced by alpha-adrenergic stimuli.  相似文献   

3.
Rat liver mitochondria were incubated at 30 degrees C with 4 mM ATP in a medium similar in electrolyte composition to that of hepatic cytosol. Under these conditions, a net increase in mitochondrial adenine nucleotides was observed that was dependent on the concentration of free Ca2+ [( Ca2+]) in the incubation medium. At 0.2 microM [Ca2+] or less, there was no demonstrable uptake of adenine nucleotides; at 0.4 microM [Ca2+], or greater, net uptake occurred. The calcium-dependent accumulation of nucleotides by mitochondria required Mg2+ in the incubation medium and was insensitive to carboxyatractyloside. The uptake of adenine nucleotides was enhanced by the addition of antimycin A or antimycin A together with oligomycin. Accumulation of nucleotides appeared to be associated with a small increase in mean mitochondrial volume, but the membrane potential was not affected. No uptake or loss of NAD-NADH by mitochondria was detected. Ruthenium red failed to inhibit the calcium-dependent uptake of adenine nucleotides by the mitochondria, indicating that stimulation of this process by Ca2+ does not involve transport of the cation into mitochondria by the Ca2+ uniporter. Because glucagon acts to elevate cytosolic [Ca2+] from approximately 0.2 microM to 0.6 microM, the same range affecting nucleotide uptake, it is proposed that the increase in mitochondrial adenine nucleotides that follows treatment with glucagon is mediated by the rise in cytosolic [Ca2+] produced by the hormone. This hypothesis was supported by the observation that epinephrine and A23187, agents that raise cytosolic [Ca2+], increased the content of mitochondrial adenine nucleotides in isolated hepatocytes. Furthermore, cells, incubated under calcium-depleting conditions, had a diminished response to glucagon.  相似文献   

4.
Vasopressin elicited a dose-dependent inhibition of glucagon-induced cAMP accumulation in isolated hepatocytes. This response was not diminished by incubation of cells with the calmodulin antagonists trifluoperazine or chlorpromazine and was only slightly reduced in Ca2+-depleted hepatocytes. Half-maximal inhibition of cAMP accumulation occurred at 8 X 10(-11) M vasopressin, a dose which does not increase cytosolic Ca2+ in hepatocytes. Direct activation of adenylate cyclase by forskolin was significantly inhibited by vasopressin in Ca2+-depleted cells. It is concluded that inhibition of hormone-induced cAMP accumulation by vasopressin in liver is not dependent on cellular Ca2+ mobilisation but may involve direct inhibition of adenylate cyclase.  相似文献   

5.
The transport of Ca2+ in islet and kidney mitochondria respiring on succinate was inhibited by atractylate and fluorocitrate, and stimulated by pyruvate, isocitrate, alpha-ketoglutarate, dibutyryl cAMP, oligomycin and bongkrekate, and by in vivo administration of glucagon, glyceraldehyde or glucose. The kidney [beta-hydroxybutyrate]/[acetoacetate] ratio was increased in glyceraldehyde treated mice. The data suggest a relationship, which might be influenced by cAMP, between activity of pyruvate, isocitrate and alpha-ketoglutarate dehydrogenases and transport of Ca2+ in islet and kidney mitochondria. A contributory role of reductive carboxylation for Ca2+ uptake, and a role of citrate for Ca2+ retention are discussed.  相似文献   

6.
Hepatocytes from juvenile male rats (80-110 g) showed a 12-fold elevation of cAMP in response to epinephrine, which was mediated by beta 2-adrenergic receptors. In these cells, either alpha 1- or beta 2-adrenergic stimulation alone activated phosphorylase and glucose release although the alpha 1-phosphorylase response was 10-fold more sensitive to epinephrine and resulted in more rapid (by 10-20 s) activation of the enzyme. This suggests that the beta 2-adrenergic response is functionally unimportant for glycogenolysis, even in juvenile rats. beta 2-Adrenergic stimulation did, however, produce an increase in the rate of gluconeogenesis from [U-14C] lactate in these cells. Aging in the male rat was associated with attenuation of the beta 2-adrenergic cAMP response coupled with the emergence of an alpha 1-receptor-mediated accumulation of cAMP. The order of potency displayed by the alpha 1-adrenergic/cAMP system to adrenergic agonists and antagonists was identical with that of the alpha 1-adrenergic/Ca2+ system. These data suggest that, in maturity, hepatic alpha 1-receptors become linked to 2 separate transduction mechanisms, namely Ca2+ mobilization and cAMP generation. Calcium depletion of hepatocytes from adult, but not juvenile, male rats increased the alpha 1-component of the cAMP response to epinephrine, but under these conditions, alpha 1-activation of phosphorylase occurred more slowly than in calcium-replete cells. Blockade of alpha 2-adrenergic receptors did not significantly modify catecholamine effects on hepatocyte cAMP or phosphorylase a levels in male rats at any age studied, suggesting a lack of functional significance for these receptors in the regulation of glycogenolysis.  相似文献   

7.
The hepatic glycine cleavage system (GCS) is the principal route for the metabolism of glycine in mammals. Flux through the GCS in isolated rat hepatocytes was stimulated by about 100% by glucagon (10(-7) M), forskolin (10(-4) M), and dibutyryl cAMP (10(-4) M). The stimulation of flux through the GCS by these agents was accompanied by marked elevation of cellular cAMP levels. A significant correlation was observed between increased cellular cAMP levels induced by glucagon and stimulation of flux through the GCS by glucagon. Exclusion of calcium from the incubation medium reduced the basal flux by 38%, but did not affect the degree of stimulation of flux through the GCS by glucagon. A single intraperitoneal injection of glucagon to rats prior to isolation of hepatocytes resulted in a 76% stimulation of flux through the GCS. These hepatocytes with stimulated flux through the GCS showed reduced sensitivity for further stimulation by glucagon. Half-maximal stimulation of flux through the GCS occurred at 3.8 +/- 1.1 and 8.5 +/- 1.4 nM glucagon in hepatocytes isolated from control and glucagon-injected rats, respectively. We conclude that cAMP is involved in the regulation of flux through the GCS by glucagon.  相似文献   

8.
In the absence of any exogenous substrates, glucagon (1 X 10(-9) M) stimulated 45Ca2+ efflux from perfused livers derived from fed rats but not in livers of 24-h-fasted animals. In livers of 24-h-fasted animals perfused under conditions which would decrease cellular NAD(P)H/NAD(P)+ ratio (pyruvate (2.0 mM) or acetoacetate (10.0 mM], glucagon (1 X 10(-9) M) did not stimulate 45Ca2+ efflux. Similarly, in livers of 24-h-fasted animals perfused with substrates which increase cellular NAD(P)H content (lactate (2.0 mM) or beta-hydroxybutyrate (10.0 mM], glucagon (1 X 10(-9) M) did not increase 45Ca2+ efflux. Glucagon (1 X 10(-9) M) elicited an increase in 45Ca2+ efflux from livers of 24-h-fasted animals, only when the livers were perfused with [lactate]/[pyruvate] and [beta-hydroxybutyrate]/[acetoacetate] ratios similar to those reported for livers of fed rats. Stimulation of 45Ca2+ efflux elicited by either 8-CPT-cAMP, a cAMP analog, or high glucagon concentrations (1 X 10(-8) M) was not affected whether livers were perfused with pyruvate (2.0 mM) or lactate (2.0 mM). Administration of isobutylmethylxanthine (50 microM) alone, or glucagon (1 X 10(-9) M) in the presence of isobutylmethylxanthine (50 microM) stimulated 45Ca2+ efflux from livers of 24-h-fasted animals perfused with pyruvate (2.0 mM) but not from livers perfused with lactate (2.0 mM). The ability of glucagon (1 X 10(-9) M) to elevate tissue cAMP levels was also regulated by the oxidation-reduction state of the livers. The data indicate that glucagon-stimulated 45Ca2+ efflux from perfused livers is mediated via cAMP and is dependent on the oxidation-reduction state of the livers.  相似文献   

9.
Epinephrine and the alpha-adrenergic agonist phenylephrine activated phosphorylase, glycogenolysis, and gluconeogenesis from lactate in a dose-dependent manner in isolated rat liver parenchymal cells. The half-maximally active dose of epinephrine was 10-7 M and of phenylephrine was 10(-6) M. These effects were blocked by alpha-adrenergic antagonists including phenoxybenzamine, but were largely unaffected by beta-adrenergic antagonists including propranolol. Epinephrine caused a transient 2-fold elevation of adenosine 3':5'-monophosphate (cAMP) which was abolished by propranolol and other beta blockers, but was unaffected by phenoxybenzamine and other alpha blockers. Phenoxybenzamine and propranolol were shown to be specific for their respective adrenergic receptors and to not affect the actions of glucagon or exogenous cAMP. Neither epinephrine (10-7 M), phenylephrine (10-5 M), nor glucagon (10-7 M) inactivated glycogen synthase in liver cells from fed rats. When the glycogen synthase activity ratio (-glucose 6-phosphate/+ glucose 6-phosphate) was increased from 0.09 to 0.66 by preincubation of such cells with 40 mM glucose, these agents substantially inactivated the enzyme. Incubation of hepatocytes from fed rats resulted in glycogen depletion which was correlated with an increase in the glycogen synthase activity ratio and a decrease in phosphorylase alpha activity. In hepatocytes from fasted animals, the glycogen synthase activity ratio was 0.32 +/- 0.03, and epinephrine, glucagon, and phenylephrine were able to lower this significantly. The effects of epinephrine and phenylephrine on the enzyme were blocked by phenoxybenzamine, but were largely unaffected by propranolol. Maximal phosphorylase activation in hepatocytes from fasted rats incubated with 10(-5) M phenylephrine preceded the maximal inactivation of glycogen synthase. Addition of glucose rapidly reduced, in a dose-dependent manner, both basal and phenylephrine-elevated phosphorylase alpha activity in hepatocytes prepared from fasted rats. Glucose also increased the glycogen synthase activity ratio, but this effect lagged behind the change in phosphorylase. Phenylephrine (10-5 M) and glucagon (5 x 10(-10) M) decreased by one-half the fall in phosphoryalse alpha activity seen with 10 mM glucose and markedly suppressed the elevation of glycogen synthase activity. The following conclusions are drawn from these findings. (a) The effects of epinephrine and phenylephrine on carbohydrate metabolism in rat liver parenchymal cells are mediated predominantly by alpha-adrenergic receptors. (b) Stimulation of these receptors by epinephrine or phenylephrine results in activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase by mechanisms not involving an increase in cellular cAMP. (c) Activation of beta-adrenergic receptors by epinephrine leads to the accumulation of cAMP, but this is associated with minimal activation of phosphorylase or inactivation of glycogen synthase...  相似文献   

10.
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation.  相似文献   

11.
The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

13.
1. The administration of glucagon to fed rats by intraperitoneal injection, or the perfusion of livers from fed rats with glucagon by the method of Mortimore [Mortimore (1963) Am.J. Physiol. 204, 699--704] was associated with increases of 15- and 5-fold respectively, in the time for which a given load of exogenous Ca2+ is retained by mitochondria subsequently isolated from the liver. This effect of glucagon was (a) also induced by N6O2'-dibutyryl cyclic AMP, (b) completely blocked by cycloheximide, (c) relatively slow in onset (15--60 min) and (d) associated with a stimulation of about 20% in the rates of ADP-stimulated oxygen utilization and Ca2+ transport measured in the presence of succinate. 2. Perfusion of livers with glucagon resulted in the isolation of mitochandria which showed a 50% increase, no significant change and a 40% increase in the concentrations of endogenous Ca, Mg and Pi respectively, when compared with mitochondria isolated from control perfused livers. 3. The administration of insulin or adrenaline to fed rats induced increases of 10- and 8-fold respectively, in the time for which Ca2+ is retained by isolated liver mitochondria. Perfusion of livers with insulin had no effect on mitochondrial Ca2+ retention time. 4. The perfusion of livers from starved rats with glucagon, or the administration of either glucagon or insulin to starved rats, increased by about 2.5- and 15-fold respectively, the time for which isolated mitochondria retain Ca2+. 5. Mechanisms which may be responsible for the observed alterations in Ca2+-retention time are discussed.  相似文献   

14.
Maximal doses of glucagon increase the phosphorylation state of 12 cytosolic proteins in isolated hepatocytes from fasted rats (Garrison, J. C., and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Incubation of hepatocytes with lower concentrations of glucagon indicates that a hierarchy of substrates exists with the concentration of glucagon required for half-maximal increases in phosphorylation varying 5-15-fold. The proteins whose phosphorylation state is most sensitive to low concentrations of glucagon are pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, both of which play key roles in the regulation of gluconeogenesis. Treatment of hepatocytes with (Sp)-cAMPS, the stimulatory diastereomer of adenosine cyclic 3',5'-phosphorothioate, mimics the response seen with glucagon. When hepatocytes are pretreated with the cAMP antagonist, (Rp)-cAMPS, the phosphorylation response is abolished at low concentrations of glucagon, and the dose of glucagon required for half-maximal stimulation of phosphorylation is increased 5-10-fold. The (Sp)-cAMPS-stimulated increases in phosphorylation state are also blunted by (Rp)-cAMPS. These results provide direct pharmacological evidence for the activation of the cAMP-dependent protein kinase in response to glucagon in the intact cell. Although low doses of glucagon appear to stimulate protein phosphorylation via the cAMP-dependent protein kinase, high doses of glucagon also cause a small increase in the concentration of free intracellular Ca2+ in hepatocytes. The glucagon-stimulated increases in the level of Ca2+ can be mimicked by (Sp)-cAMPS and inhibited by pretreatment with (Rp)-cAMPS. These results suggest that glucagon can elevate intracellular Ca2+ via cAMP and the cAMP-dependent protein kinase.  相似文献   

15.
The role of cyclic-adenosine monophosphate (cAMP) and calcium (Ca2+) in the metabolic responses to adenosine was studied in isolated hepatocytes from fed rats. In the presence of 1.2 mM Ca but not in the absence of Ca2+, adenosine stimulated ureagenesis without increasing cAMP. Adenosine inhibited the glucagon mediated increase in cAMP. Adenosine increased free cytoplasmic Ca2+ provided that cells were incubated in the presence of external Ca2+. In the absence of added Ca2+ adenosine did not stimulate ureagenesis or the movements of Ca2+. It is suggested that, in the liver cell, Ca2+ may be a second messenger for adenosine.  相似文献   

16.
We examined the effects of cyclic AMP (cAMP) on the intracellular Ca2+ release in both the intact and skinned arterial smooth muscle. The amount of Ca2+ in the sarcoplasmic reticulum (SR) was estimated indirectly by caffeine-induced contraction of the skinned preparation and directly by caffeine-stimulated 45Ca efflux from the previously labeled skinned preparation. The norepinephrine-induced release contraction was markedly enhanced by dibutyryl cAMP (dbcAMP) and reduced by propranolol. The stimulatory effect of dbcAMP was best observed when the muscle was exposed to 10(-5) M dbcAMP and 2 X 10(-6) M norepinephrine was used to induce the release contraction. 10(-5) M cAMP had no effect on the Ca2+-induced contraction or on the pCa-tension relationship in the skinned preparation. This concentration of cAMP increased Ca2+ uptake into the SR of the skinned preparation when the Ca2+ in the SR was first depleted. 10(-5) M cAMP stimulated Ca2+-induced Ca2+ release from the SR after optimal Ca2+ accumulation by the SR. The results indicate that the stimulatory effect of cAMP on the norepinephrine-induced release contraction could be due to enhancement of the Ca2+-induced Ca2+ release from the SR in arterial smooth muscle.  相似文献   

17.
1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium.  相似文献   

18.
Characterization of responses of isolated rat hepatocytes to ATP and ADP   总被引:35,自引:0,他引:35  
In isolated rat hepatocytes, ATP and ADP (10(-6) M) rapidly mobilize intracellular Ca2+ and increase the concentration of free cytosolic Ca2+ ([Ca2+]i) within 1-2 s. The increase in [Ca2+]i is maximal (2.5- to 3-fold) by about 10 s and is dose-dependent, with ATP and ADP being half-maximally effective at 8 X 10(-7) and 3 X 10(-7) M, respectively. At submaximal concentrations, the rise in [Ca2+]i is transient due to hydrolysis of the agonist. The increase in [Ca2+]i in response to ATP or ADP can be potentiated by low concentrations of glucagon (10(-9) M). In addition, the [Ca2+]i rise can be antagonized in a time- and dose-dependent manner by the tumor promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate. Adenosine, at concentrations as high as 10(-4) M, does not alter [Ca2+]i. AMP is ineffective at 10(-5) M, but at 10(-4) M it increases [Ca2+]i approximately 1.5-fold after a 30-s lag and at a slow rate. Conversely, high concentrations (10(-4) M) of adenosine and AMP increases cell cAMP about 2- to 3-fold. ATP and ADP, at concentrations (10(-6) M) which near-maximally increase [Ca2+]i, do not affect hepatocyte cAMP. ATP and ADP increase the cellular level of myoinositol 1,4,5-trisphosphate (IP3), the putative second messenger for Ca2+ mobilization. The increase in IP3 is dose-dependent and precedes or is coincident with the [Ca2+]i rise. There is an approximate 20% increase in IP3 with concentrations of ATP or ADP which near-maximally induce other physiological responses. It is concluded that submicromolar concentrations of ATP and ADP mobilize intracellular Ca2+ and activate phosphorylase in hepatocytes due to generation of IP3. These effects may involve P2-purinergic receptors. In contrast adenosine and AMP interact with P1 (A2)-purinergic receptors to increase cAMP.  相似文献   

19.
The subcellular distribution of 45Ca2+ accumulated by isolated rat hepatocytes exposed to dibutyryl cyclic AMP (dbcAMP) followed by vasopressin (Vp) was studied by means of a nondisruptive technique. When treated with dbcAMP followed by vasopressin, hepatocytes obtained from fed rats accumulated an amount of Ca2+ approximately fivefold higher than that attained under control conditions. Ca2+ released from the mitochondrial compartment by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) accounted for only a minor portion of the accumulated Ca2+. The largest portion was released by the Ca2+ ionophore A23187 and was attributable to a nonmitochondrial compartment. DbcAMP + Vp-treatment also caused a maximal stimulation of glucose production and a twofold increase in cellular glucose 6-phosphate levels. In hepatocytes obtained from fasted rats, dbcAMP + Vp-stimulated Ca2+ accumulation was lower, although with the same subcellular distribution, and was associated with a minimal glucose production. In the presence of gluconeogenetic substrates (lactate plus pyruvate) hepatocytes from fasted rats were comparable to cells isolated from fed animals. However, Ca2+ accumulation and glucose 6-phosphate production could be dissociated in the absence of dbcAMP, in the presence of lactate/pyruvate alone. Under this condition in fact Vp induced only a minimal accumulation of Ca2+ in hepatocytes isolated from fasted rats, although glucose production was markedly increased. Moreover, treatment of fed rat hepatocytes with 1 mM ATP caused a maximal activation of glycogenolysis, but only a moderate stimulation of cellular Ca2+ accumulation. In this case, sequestration of Ca2+ occurred mainly in the mitochondrial compartment. By contrast, the addition of ATP to dbcAMP-pretreated hepatocytes induced a large accumulation of Ca2+ in a nonmitochondrial pool. Additional experiments using the fluorescent Ca2+ indicator Fura-2 showed that dbcAMP pretreatment can enlarge and prolong the elevation of cytosolic free Ca2+ caused by Vp. A nonmitochondrial Ca2+ pool thus appears mainly responsible for the Ca2+ accumulation stimulated by dbcAMP and Vp in isolated hepatocytes, and cyclic AMP seems able to activate Ca2+ uptake in such a nonmitochondrial pool.  相似文献   

20.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号