首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we provide evidence that the low expression of IGF-1R at the cell surface of estrogen-independent breast cancer cells is due to a low rate of de novo synthesis of dolichyl phosphate. The analyses were performed on the estrogen receptor-negative breast cancer cell line MDA231 and, in comparison, the melanoma cell line SK-MEL-2, which expresses a high number of plasma membrane-bound IGF-1R. Whereas the MDA231 cells had little or no surface expression of IGF-1R, they expressed functional (i.e., ligand-binding) intracellular receptors. By measuring the incorporation of [3H]mevalonate into dolichyl phosphate, we could demonstrate that the rate of dolichyl phosphate synthesis was considerably lower in MDA231 cells than in SK-MEL-2 cells. Furthermore, N-linked glycosylation of the alpha-subunit of IGF-1R was 8-fold higher in the melanoma cells. Following addition of dolichyl phosphate to MDA231 cells, N-linked glycosylation of IGF-1R was drastically increased, which in turn was correlated to a substantial translocation of IGF-1R to the plasma membrane, as assayed by IGF-1 binding analysis and by Western blotting of plasma membrane proteins. The dolichyl phosphate-stimulated receptors were proven to be biochemically active since they exhibited autophosphorylation. Under normal conditions MDA231 cells, expressing very few IGF-1R at the cell surface, were not growth-arrested by an antibody (alphaIR-3) blocking the binding of IGF-1 to IGF-1R. However, after treatment with dolichyl phosphate, leading to a high cell surface expression of IGF-1R, alphaIR-3 efficiently blocked MDA231 cell growth. Taken together with the fact that the breast cancer cells produce IGF-1 and exhibit intracellular binding, our data suggest that the level of de novo -synthesized dolichyl phosphate may be critical for whether the cells will use an intracellular or an extracellular autocrine IGF-1 pathway.  相似文献   

2.
Following treatment of Chinese hamster ovary cells with inhibitors of mevalonate biosynthesis in the presence of exogenous cholesterol, the cellular concentration of phosphorylated dolichol and the incorporation of [3H]mannose into dolichol-linked saccharides and N-linked glycoproteins declined coincident with a decline in DNA synthesis. Addition of mevalonate to the culture medium increased rates of mannose incorporation into lipid-linked saccharides and restored mannose incorporation into N-linked glycoproteins to control levels within 4 h. After an additional 4 h, synchronized DNA synthesis began. Inhibition of the synthesis of lipid-linked oligosaccharides and N-linked glycoproteins by tunicamycin prevented the induction of DNA synthesis by mevalonate, indicating that glycoprotein synthesis was required for cell division. The results suggest that the rate of cell culture growth may be influenced by the level of dolichyl phosphate acting to limit the synthesis of N-linked glycoproteins.  相似文献   

3.
Previously we showed that CHO cell growth is arrested in the G1 or G0 phase within 24 h after the biosynthesis of mevalonic acid is blocked. The growth-limiting factor under these conditions appeared to be dolichyl phosphate or one of its glycosylated derivatives with consequent decrease in the synthesis of N-linked glycoproteins (Doyle, J.W., and A.A. Kandutsch, 1988, J. Cell Physiol. 137:133–140; Kabakoff, B., J.W. Doyle, and A.A. Kandutsch, 1990, Arch. Biochem. Biophys. 276:382–389). We show herein that cell surface glycoproteins are depleted in the inhibited cultures and that growth arrest is delayed when supraphysiological concentrations of insulin, insulin-like growth factor-1 (IGF-1) and bFGF are added to the culture medium. Apparently an elevated level of a growth factor increases the length of time during which a threshold level of occupied receptor is maintained as the number of glycosylated receptor molecules declines. The results support the idea that cellular levels of dolichyl phosphate and its derivatives may limit cell division by controlling the numbers of functional receptors for growth factors and of other glycoproteins on the cell surface. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The role of N-glycosylation in the pharmacological properties and cell surface expression of AT1 receptor was evaluated. Using site-directed mutagenesis, we substituted both separately and simultaneously the asparagine residues in all three putative N-linked glycosylation consensus sequences (N-X-S/T) of AT1 receptor (positions 4, 176, and 188) with aspartic acid. Expression of these mutant receptors in COS-7 cells followed by photolabeling with [125I]-[p-benzoyl-Phe8]AngII and SDS-PAGE revealed ligand-receptor complexes of four different molecular sizes, indicating that the three N-glycosylation sites are actually occupied by oligosaccharides. Binding studies showed that the affinity of each mutant receptor for [Sar1,Ile8]Ang II was not significantly different from that of wild-type AT1 receptor. Moreover, the functional properties of all mutant receptors were unaffected as evaluated by inositol phosphate production. However, the expression levels of the aglycosylated mutant were 5-fold lower than that of the wild-type AT1 receptor. Use of green fluorescent protein-AT1 receptor fusion proteins in studying the cellular location of the aglycosylated mutant demonstrated that it was distributed at a much higher density to the ER-Golgi complex than to the plasma membrane in HEK 293 cells. Together, these results suggest an important role of N-glycosylation in the proper trafficking of AT1 receptor to the plasma membrane.  相似文献   

5.
Proteinase-activated receptor 1 (PAR(1)) induces activation of platelet and vascular cells after proteolytic cleavage of its extracellular N terminus by thrombin. In pathological situations, other proteinases may be generated in the circulation and might modify the responses of PAR(1) by cleaving extracellular domains. In this study, epitope-tagged wild-type human PAR(1) (hPAR(1)) and a panel of N-linked glycosylation-deficient mutant receptors were permanently expressed in epithelial cells (Kirsten murine sarcoma virus-transformed rat kidney cells and CHO cells). We have analyzed the role of N-linked glycosylation in regulating proteinase activation/disarming and cell global expression of hPAR(1). We reported for the first time that glycosylation in the N terminus of hPAR(1) downstream of the tethered ligand (especially Asn(75)) governs receptor disarming to trypsin, thermolysin, and the neutrophil proteinases elastase and proteinase 3 but not cathepsin G. In addition, hPAR(1) is heavily N-linked glycosylated and sialylated in epithelial cell lines, and glycosylation occurs at all five consensus sites, namely, Asn(35), Asn(62), Asn(75), Asn(250), and Asn(259). Removing these N-linked glycosylation sequons affected hPAR(1) cell surface expression to varying degrees, and N-linked glycosylation at extracellular loop 2 (especially Asn(250)) of hPAR(1) is essential for optimal receptor cell surface expression and receptor stability.  相似文献   

6.
The effects of two peroxisome proliferators, gemfibrozil and clofibrate, on syntheses of dolichol and cholesterol in rat liver were investigated. Gemfibrozil did not affect the overall content of dolichyl phosphate, but it changed the chain-length distribution of dolichyl phosphate, increasing the levels of species with shorter isoprene units. Gemfibrozil suppressed synthesis of dolichyl phosphate from [(3)H]mevalonate and [(3)H]farnesyl pyrophosphate in rat liver. In contrast, clofibrate increased the content of dolichol (free and acyl ester forms). It remarkably enhanced dolichol synthesis from mevalonate, but did not affect dolichol synthesis from farnesyl pyrophosphate. Gemfibrozil elevated cholesterol synthesis from [(14)C]acetate, but did not affect the synthesis from mevalonate. Clofibrate suppressed cholesterol synthesis from acetate, but did not affect cholesterol synthesis from mevalonate. These results suggest that gemfibrozil suppresses synthesis of dolichyl phosphate by inhibiting, at the least, the pathway from farnesyl pyrophosphate to dolichyl phosphate. As a result, the chain-length pattern of dolichyl phosphate may show an increase in shorter isoprene units. Clofibrate may increase the content of dolichol by enhancing dolichol synthesis from mevalonate. Gemfibrozil may increase cholesterol synthesis by activating the pathway from acetate to mevalonate. Unlike gemfibrozil, clofibrate may decrease cholesterol synthesis by inhibiting the pathway from acetate to mevalonate.  相似文献   

7.
Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment.  相似文献   

8.
Growth arrest induced by serum depletion and/or treatment with mevinolin (an inhibitor of mevalonate synthesis) in the human breast cancer cell line Hs578T was overcome by exogenous mevalonate, indicating that some product or metabolite of mevalonate may be involved in the mediation of serum-regulated growth of these cells. In the search for such compounds we first tested a variety of known end products of mevalonate with respect to their ability to counteract the inhibition of DNA synthesis caused by serum-free medium and mevinolin. Thereby high doses (10 μg/ml) of dolichol-20 were found to cause a partial counteraction. After straight-phase HPLC purification of endogenous lipids, isolated from 3H- or 14C-mevalonate-labelled Hs578T cultures, we found that non-sterol lipids co-eluting with dolichols efficiently induced DNA synthesis. After further purification with reverse-phase HPLC it was confirmed that virtually all of this effect was achieved by compound(s) (seen as a single UV and radioactive peak) co-eluting with dolichol-20. Nanogram doses, at most, of this (these) compound(s) elicited a substantial stimulation of DNA synthesis. The lipid(s) also counteracted the inhibition by mevinolin of N-linked glycosylation, indicating that it (they) also interfere(s) with this processing. Since treatment with tunicamycin (an inhibitor of N-linked glycosylation) abolished this growth-stimulative effect, N-linked glycosylation seems to be a necessary event in the processes leading to lipid-induced initiation of DNA synthesis.  相似文献   

9.
The beta(1)-adrenergic receptor (beta(1)AR) has one predicted site of N-linked glycosylation on its extracellular amino-terminus, but the glycosylation and potential functional importance of this site have not yet been examined. We show here that the beta(1)AR is glycosylated in various cell types and that mutation of the single predicted site of N-linked glycosylation (N15A) results in the formation of receptors that are not N-glycosylated. The beta(1)AR N15A mutant exhibited significantly decreased basal surface expression relative to the wild-type receptor but had no detectable deficits in ligand binding or agonist-promoted internalization. Co-immunoprecipitation experiments using Flag-tagged and HA-tagged receptors demonstrated that the beta(1)AR-N15A mutant receptor exhibits a markedly reduced capacity for dimerization relative to wild-type beta(1)AR. These data reveal that the beta(1)AR is glycosylated on Asn15 and that this glycosylation plays a role in regulating beta(1)AR surface expression and dimerization.  相似文献   

10.
Melanin-concentrating hormone (MCH) is known to act through two G-protein-coupled receptors MCHR1 and MCHR2. MCHR1 has three potential sites (Asn13, Asn16 and Asn23) for N-linked glycosylation in its extracellular amino-terminus which may modulate its reactivity. Site-directed mutagenesis of the rat MCHR1 cDNA at single or multiple combinations of the three potential glycosylation sites was used to examine the role of the putative carbohydrate chains on receptor activity. It was found that all three potential N-linked glycosylation sites in MCHR1 were glycosylated, and that N-linked glycosylation of Asn23 was necessary for full activity. Furthermore, disruption of all three glycosylation sites impaired proper expression at the cell surface and receptor activity. These data outline the importance of the N-linked glycosylation of the MCHR1.  相似文献   

11.
Src family protein-tyrosine kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation and apoptosis. Surprisingly, these kinases also participate in mitogenic signalling by receptors that themselves exhibit an intrinsic protein-tyrosine kinase activity, including those for platelet-derived growth factor (PDGF), epidermal growth factor and colony-stimulating factor-1. Indeed, Src kinases are strictly required for the nuclear expression of the c-myc proto-oncogene and thus for DNA synthesis in response to PDGF. However, the nature of the signalling pathways by which Src kinases participate in the induction of c-myc expression by tyrosine kinase receptors is still unknown. Here we show that PDGF enhances c-myc expression and stimulates the c-myc promoter in a Src-dependent manner, and that neither Ras nor the mitogen-activated protein kinase pathway mediate these effects. In contrast, we present evidence that PDGF stimulates Vav2 through Src, thereby initiating the activation of a Rac-dependent pathway that controls the expression of the c-myc proto-oncogene.  相似文献   

12.
The platelet-derived growth factor (PDGF) modulated growth response of the MG-63 human osteosarcoma cell line, which neither expresses c-sis mRNA nor secretes a PDGF analogue, was characterized. Scatchard analysis demonstrated that the MG-63 cells have 23,000 receptors per cell with a Kd of 5 X 10(-11) M. The receptor became phosphorylated, in a PDGF concentration-dependent manner, when 32P-orthophosphate-labeled cells were treated with PDGF for 3 h at 4 degrees C. The phosphorylated receptor was identified by autoradiography and gel electrophoresis after isolation of the 32P-labeled receptor using a solid-phase monoclonal antibody directed against phosphotyrosine. Binding of the receptor to the antibody was inhibited by 5 mM phenyl phosphate, further suggesting that PDGF stimulated tyrosine-specific receptor autophosphorylation. In addition, treatment of MG-63 cells with PDGF for 3 h at 37 degrees C induced a 7.5-fold increase in c-myc mRNA accumulation as analyzed on Northern gels. However, MG-63 cells grew equally well in either serum-(which contains PDGF) or plasma-(which does not) supplemented medium. Furthermore, PDGF did not stimulate DNA synthesis in growth arrested MG-63 cells, nor did it potentiate DNA synthesis modulated by somatomedin C. Thus MG-63 cells are a naturally occurring cell variant in which PDGF stimulates c-myc expression but does not modulate mitogenesis.  相似文献   

13.
In preliminary experiments it was established that the hypertrophic and hyperplastic responses of neonatal cardiac myocytes in culture were associated with enhanced expression of IGF-1 and IGF-1 receptors in these cells. Therefore, to determine the role of IGF-1 receptors on myocyte growth, cells were exposed to antisense oligodeoxynucleotides to IGF-1 receptor mRNA and the effects of this intervention on DNA synthesis, nuclear mitotic division, and changes in the number of myocytes were measured. Moreover, the influence of this procedure on ANF induction and myocyte cell volume was examined. Inhibition of the formation of IGF-1 receptors on myocytes suppressed DNA replication, mitosis, and cell proliferation. In contrast, the antisense treatment did not alter the expression of ANF in myocytes or cellular hypertrophy. Finally, IGF-1 stimulated DNA synthesis in myocytes cultured in serum-free medium, without inducing cellular hypertrophy. In conclusion, ligand activation of IGF-1 receptors on myocytes appears to be coupled with cell proliferation, whereas myocyte cellular hypertrophy seems to be independent from this effector pathway.  相似文献   

14.
Larsson  Olle 《Glycobiology》1993,3(5):475-479
Proliferation of exponentially growing breast cancer cells (lineHs578T) was blocked specifically in G1 by 3-hydroxy-3-methylglutarylCoenzyme A (HMG CoA) reductase inhibition, as well as by inhibitionof N-linked glycosylation. As a consequence of these inhibitoryconditions, the cells were synchronized in the G1 stage of thecell cycle. The similarities in the kinetic responses pointto the possibility that the two different types of metabolicinhibitions block cell cycle progression by common mechanisms.One possibility is that the inhibition of HMG CoA reductaseactivity also leads to a depressed rate of N-linked glycosylation,which in turn may constitute the critical event for cell cycleprogression and cell growth. In order to investigate whetherthis relationship exists in breast cancer cells, cells synchronizedin G1 by mevinolin (an inhibitor of HMG CoA reductase) wereused. Upon addition of mevalonate, whose endogenous synthesisis catalysed by HMG CoA reductase, the cells entered S phaseafter a 4 h pre-replicative period. Mevalonate stimulation alsoled to a rapid and substantial increase in N-linked glycosylation,measured by determining the uptake of radioactive glucosamine.This metabolic event was found to be of critical importancefor the initiation of DNA synthesis. However, as soon as thecells had entered S phase, they were independent of the levelof N-linked glycosylation. breast cancer cells glycosylation HMG CoA reductase  相似文献   

15.
Polyprenyl phosphates, including undecaprenyl phosphate and dolichyl phosphate, are essential intermediates in several important biochemical pathways including N-linked protein glycosylation in eukaryotes and prokaryotes and prokaryotic cell wall biosynthesis. Herein, we describe the evaluation of three potential undecaprenol kinases as agents for the chemoenzymatic synthesis of polyprenyl phosphates. Target enzymes were expressed in crude cell envelope fractions and quantified via the use of luminescent lanthanide-binding tags (LBTs). The Streptococcus mutans diacylglycerol kinase (DGK) was shown to be a very useful agent for polyprenol phosphorylation using ATP as the phosphoryl transfer agent. In addition, the S. mutans DGK can be coupled with two Campylobacter jejuni glycosyltransferases involved in N-linked glycosylation to efficiently biosynthesize the undecaprenyl pyrophosphate-linked disaccharide needed for studies of PglB, the C. jejuni oligosaccharyl transferase.  相似文献   

16.
Kim JG  Kang MJ  Yoon YK  Kim HP  Park J  Song SH  Han SW  Park JW  Kang GH  Kang KW  Oh do Y  Im SA  Bang YJ  Yi EC  Kim TY 《PloS one》2012,7(3):e33322

Background

Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer.

Methodology/Principal Findings

In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity.

Conclusion and Significance

The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells.  相似文献   

17.
Abstract. Balb/c 3T3 cells require prolonged stimulation by serum or growth factors to enter DNA synthesis. However, in p6 cells, a derivative cell line from 3T3 cells which constitutively over-express the insulin-like growth factor-1 (IGF-1) receptor, a serum pulse of only 1 h is sufficient for maximal stimulation. Furthermore, maximal stimulation of DNA synthesis is also obtained when 3T3 cells, serum-stimulated for only 1 h, are subsequently incubated with IGF-1. Our results indicate that short pulses of growth factors render 3T3 cells capable of responding to IGF-1, either by increasing the number of IGF-1 receptors or by providing a new substrate for the activated receptor.  相似文献   

18.
19.
BALB/c3T3 cells are exquisitely growth regulated and require both platelet-derived growth factor and insulin-like growth factor-1 (IGF-1) for optimal proliferation. BALB/c3T3 cells that constitutively express IGF-1 and elevated levels of IGF-1 receptor (IGF-1R) are capable of growth in serum-free medium without the addition of any exogenous growth factors. BALB/c3T3 cells overexpressing only the IGF-1R plasmid required IGF-1 or insulin for serum-free growth. Antisense oligodeoxynucleotides complementary to IGF-1R mRNA inhibited IGF-1-mediated cell growth. Under these conditions, neither the epidermal growth factor receptor nor phospholipase C gamma 1 was autophosphorylated. These findings indicate that constitutive expression of IGF-1 and IGF-1R allows 3T3 cells to grow in serum-free medium without addition of those exogenous growth factors that are required by the parent cell line.  相似文献   

20.
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号