首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.  相似文献   

2.
The molecular clock mediates leptin-regulated bone formation   总被引:23,自引:0,他引:23  
Fu L  Patel MS  Bradley A  Wagner EF  Karsenty G 《Cell》2005,122(5):803-815
The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.  相似文献   

3.
Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual.  相似文献   

4.
Signals derived from the autonomic nervous system exert potent effects on osteoclast and osteoblast function. A ubiquitous sympathetic and sensory innervation of all periosteal surfaces exists and its disruption affects bone remodeling. Several neuropeptides, neurohormones and neurotransmitters and their receptors are detectable in bone. Bone mineral content decreased in sympathetically denervated mandibular bone. When a mechanical stress was superimposed on mandibular bone by cutting out the lower incisors, an increase in bone density ensued providing the sympathetic innervation was intact. A lower eruption rate of sympathetically denervated incisors at the impeded eruption side, and a higher eruption rate of denervated incisors at the unimpeded side were also observed. A normal sympathetic neural activity appears to be a pre-requisite for maintaining a minimal normal unimpeded incisor eruption and for keeping the unimpeded eruption to attain abnormally high velocities under conditions of stimulated incisor growth. These and other results suggest that the sympathetic nervous system plays an important role in mandibular bone metabolism.  相似文献   

5.
Osteoporosis is one of the major health problems in our modern world. Especially, disuse (unloading) osteoporosis occurs commonly in bedridden patients, a population that is rapidly increasing due to aging-associated diseases. However, the mechanisms underlying such unloading-induced pathological bone loss have not yet been fully understood. Since sympathetic nervous system could control bone mass, we examined whether unloading-induced bone loss is controlled by sympathetic nervous tone. Treatment with beta-blocker, propranolol, suppressed the unloading-induced reduction in bone mass. Conversely, beta-agonist, isoproterenol, reduced bone mass in loaded mice, and under such conditions, unloading no longer further reduced bone mass. Analyses on the cellular bases indicated that unloading-induced reduction in the levels of osteoblastic cell activities, including mineral apposition rate, mineralizing surface, and bone formation rate, was suppressed by propranolol treatment and that isoproterenol-induced reduction in these levels of bone formation parameters was no longer suppressed by unloading. Unloading-induced reduction in the levels of mineralized nodule formation in bone marrow cell cultures was suppressed by propranolol treatment in vivo. In addition, loss of a half-dosage in the dopamine beta-hydroxylase gene suppressed the unloading-induced bone loss and reduction in mineralized nodule formation. Unloading-induced increase in the levels of osteoclastic activities such as osteoclast number and surface as well as urinary deoxypyridinoline was all suppressed by the treatment with propranolol. These observations indicated that sympathetic nervous tone mediates unloading-induced bone loss through suppression of bone formation by osteoblasts and enhancement of resorption by osteoclasts.  相似文献   

6.
The peripheral nervous system is critically involved in bone metabolism, osteogenesis, and bone remodeling. Nerve fibers of sympathetic and sensory origin innervate synovial tissue and subchondral bone of diathrodial joints. They modulate vascularization and matrix differentiation during endochondral ossification in embryonic limb development, indicating a distinct role in skeletal growth and limb regeneration processes. In pathophysiological situations, the innervation pattern of sympathetic and sensory nerve fibers is altered in adult joint tissues and bone. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters. Osteoblasts, osteoclasts, mesenchymal stem cells, synovial fibroblasts, and different types of chondrocytes produce distinct subtypes of adrenoceptors, receptors for vasointestinal peptide, for substance P and calcitonin gene-related peptide. Many of these cells even synthesize neuropeptides such as substance P and calcitonin gene-related peptide and are positive for tyrosine-hydroxylase, the rate-limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters modulate osteo-chondrogenic differentiation of mesenchymal progenitor cells during endochondral ossification in limb development. In adults, sensory and sympathetic neurotransmitters are critical for bone regeneration after fracture and are involved in the pathology of inflammatory diseases as rheumatoid arthritis which manifests mainly in joints. Possibly, they might also play a role in pathogenesis of degenerative joint disorders, such as osteoarthritis. All together, accumulating data imply that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for proper limb formation during embryonic skeletal growth. In adults, they modulate bone regeneration, bone remodeling, and articular cartilage homeostasis in addition to their classic neurological actions.  相似文献   

7.
Communication between sympathetic neurons and osteoblasts through the adrenergic receptor pathway has already been reported. To investigate whether the sympathetic neurons have a direct effect on osteoblast differentiation, an in vitro Transwell coculture system was established in which osteoblasts were cocultured with sympathetic neurons with no cell-to-cell contact. The expression of osteogenesis-related genes was upregulated in osteoblasts cocultured with sympathetic neurons. Meanwhile, bone morphogenetic protein (BMP) mRNA and protein expressions were detected in sympathetic neurons, and BMP secretion from sympathetic neurons was also confirmed. However, transfection with BMP-2 and/or BMP-6 siRNA in sympathetic neurons caused a down-regulation of osteogenesis-related genes in the cocultured osteoblasts. Sympathetic neurons promoted osteoblast differentiation through BMP signaling pathway, implying that the integrity of sympathetic neurons was important for optimal bone formation and remodeling.  相似文献   

8.
During the last fifteen years, an increasing number of studies have examined the origin, the ontogeny, and the distribution of nerve fibers in bone. They have also investigated the nature of neuromediators conveyed by these skeletal nerve fibers. Experimental models of sensory and sympathetic denervation and clinical studies have shown that these two neuronal systems are involved in bone development, growth and remodeling. More recently, some new concepts regarding the role of nerve fibers in bone physiology have emerged with the demonstration of a leptin-dependent central control of bone formation via the sympathetic system. This new neural regulating pathway of bone cell functions could have enormous implications for human skeletal biology and treatment of bone pathologies.  相似文献   

9.
OBJECTIVEs: Bone remodeling has recently been revealed to be under sympathetic nerve control. The role of the sympathetic nerve system is not clearly understood. The present study aim to explore the effect of chemical sympathectomy and stress on bone remodeling in adult rats. METHODS: 24 twelve-month-old Wistar rats were divided into three group (sympathectomy, stress and control). The sympathectomy and stress group rats were administered 6-hydroxydopamine (150?mg/kg each day) and saline (1?ml/kg each day) intraperitoneal respectively for one week and exposed to stress procedure for another three weeks. The stress procedure was mild, unpredictable footshock, administered for one hour once daily. Analysis of serum chemistry, microcomputed tomography, dual energy X-ray absorptiometry, biomechanical testing and bone histomorphometry were employed. RESULTS: The stress group rats showed increased bone resorption in contrast to the sympathectomy and control group rats. The serum level of calcium and phosphorus cations and norepinephrine were enhanced, the cancellous bone volume and bone mineral density were reduced, bone mechanical property such as strength, ductility and toughness were weakened, the osteoclast counts and osteoclast surfaces were increased and the bone formatin rate were decreased significantly in the stress group rats in contrast to the other two groups rats. There was no significant difference of bone remodeling between the sympathectomy group and control group rats. CONCULSION: Our study showed stress-increased sympathetic nerve system activity enhanced bone resorption while chemical sympathectomy inhibited bone resorption under stress. We postulate sympathetic neurotransmitter and neuropepitide may play a role in regulating bone remodeling.  相似文献   

10.
11.
12.
Charcot foot in diabetes: farewell to the neurotrophic theory.   总被引:2,自引:0,他引:2  
Neuropathic osteoarthropathy is characterised by relatively painless swelling together with extensive damage in bones and joints, predominantly in the feet and ankles. The uncontrolled natural course of the condition leads to gross foot deformity, skin pressure ulceration, spreading infections, and sometimes amputation. Jean-Martin Charcot in 1883 described "Charcot foot" named after him in patients with tabes dorsalis insensitivity. Charcot believed that intrinsic bone weakness was the underlying condition, and was caused by neurogenic deficiencies in bone nutrition. His followers believed such dystrophy to be mediated by sympathetic denervation of the bone vasculature (neurotrophic, or neurovascular theory). Attempts to prove this theory were futile. A neurogenic circulatory disorder potentially relevant to bone nutrition could not be identified. Nowadays, Charcot foot is mostly seen in diabetic neuropathy, which has replaced syphilis as a frequent cause of peripheral nerve dysfunction. Recent studies in the diabetic Charcot foot and bone turnover indicate that the neurotrophic theory is a myth. The assumption of bone resorption due to sympathetic denervation proved to be false--sympathetic activity increases osteoclastic activity and thereby bone loss (sympathomimetic bone resorption). Except for the transient, inflammatory stage of the diabetic Charcot foot, there is no evidence of relevant osteoporosis or demineralisation of the foot skeleton in diabetes.  相似文献   

13.
14.
The expression of neurotransmitter receptors by bone cells supports the concept that the nervous system is a regulator of bone metabolism. The discrimination of the respective roles of the sensory and sympathetic nervous systems requires evidence of topographic relationships between the corresponding fibers and the cells involved in bone turnover, in vivo. In this study, the influence of the sympathetic system on bone resorption was assessed by using a synchronized model of cortical resorption along the mandible. The sympathetic system was destroyed by daily injections of guanethidine (40 mg/kg) for 25 days; a resorption wave was induced on day 21. The distribution of periosteal tyrosine-hydroxylase (TH)-, vasoactive intestinal polypeptide (VIP)-, and calcitonin gene-related peptide (CGRP)-immunoreactive (IR) fibers was studied by compartmentalizing the periosteum. Most fibers were located in the distal, non-osteogenic compartment. TH-IR fibers were located perivascularly, VIP-IR fibers were gathered at the boundary with the osteogenic compartment, and CGRP-IR fibers were scattered. Sympathectomy decreased the number of TH- and VIP-IR fibers and increased the number of CGRP-IR fibers, without changing their topography. After the injection of Fast blue, a retrograde fluorescent marker, over the periosteum, fluorescent neuronal cell bodies were found in the superior cervical ganglion (SCG). Many neurons were TH-IR and very few were VIP-IR. Sympathectomy decreased the numbers of fluorescent and TH-IR cell bodies. It also decreased the number of preosteoclasts and osteoclasts, which had a drastic effect on the cortical bone surface, as assessed by scanning electron microscopy. These data indicate that VIP-IR fibers have a strategic position close to the most peripheral and less differentiated, osteogenic cells, pointing to a functional relationship. As poorly differentiated osteogenic cells support preosteoclast differentiation, VIP-IR fibers may be involved in this process, as suggested by the smaller number of preosteoclasts in sympathectomized rats. Although VIP is predominantly a parasympathetic mediator, it seemed to be conveyed by sympathetic fibers, as shown by the marked effect of guanethidine treatment. Nevertheless, these fibers did not originate from the SCG, contrary to TH-IR fibers.  相似文献   

15.
Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly reduced dendritic arborization in vivo in sympathetic ganglia of adult male rats. In cultured sympathetic neurons, statins caused dendrite retraction and reversibly blocked bone morphogenetic protein-induced dendritic growth without altering cell survival or axonal growth. Supplementation with mevalonate or isoprenoids, but not cholesterol, attenuated the inhibitory effects of statins on dendritic growth, whereas specific inhibition of isoprenoid synthesis mimicked these statin effects. Statins blocked RhoA translocation to the membrane, an event that requires isoprenylation, and constitutively active RhoA reversed statin effects on dendrites. These observations that statins decrease dendritic arborization in sympathetic neurons by blocking RhoA activation suggest a novel mechanism by which statins decrease sympathetic activity and protect against cardiovascular and cerebrovascular disease.  相似文献   

16.
Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.  相似文献   

17.
The sympathetic nervous system controls bone remodeling by regulating bone formation and resorption. How nerves and bone cells influence each other remains elusive. Here we modulated the content or activity of the neuropeptide Vasoactive Intestinal Peptide to investigate nerve-bone cell interplays in the mandible periosteum by assessing factors involved in nerve and bone behaviors. Young adult rats were chemically sympathectomized or treated with Vasoactive Intestinal Peptide or Vasoactive Intestinal Peptide10-28, a receptor antagonist. Sympathectomy depleted the osteogenic layer of the periosteum in neurotrophic proNerve Growth Factor and neurorepulsive semaphorin3a; sensory Calcitonin-Gene Related Peptide-positive fibers invaded this layer physiologically devoid of sensory fibers. In the periosteum non-osteogenic layer, sympathectomy activated mast cells to release mature Nerve Growth Factor while Calcitonin-Gene Related Peptide-positive fibers increased. Vasoactive Intestinal Peptide treatment reversed sympathectomy effects. Treating intact animals with Vasoactive Intestinal Peptide increased proNerve Growth Factor expression and stabilized mast cells. Vasoactive Intestinal Peptide10-28 treatment mimicked sympathectomy effects. Our data suggest that sympathetic Vasoactive Intestinal Peptide modulate the interactions between nervous fibers and bone cells by tuning expressions by osteogenic cells of factors responsible for mandible periosteum maintenance while osteogenic cells keep nervous fibers at a distance from the bone surface.  相似文献   

18.
The hormonal control of osteoblast activity has been speculated for a long time. In search of such a central hormone, leptin was identified as an inhibitor of bone formation. Intracerebroventricular infusion of leptin resulted in a decrease of bone mass establishing that bone mass is regulated centrally. The peripheral mediator of leptin’s action was identified as being the sympathetic nervous system. Mice deficient for catecholamines have high bone mass. β-Receptor agonists decreased bone mass, and conversely, treatment by β-blockers increased bone mass.  相似文献   

19.
Interactions between all-trans-retinoic acid (RA) and bone morphogenetic proteins (BMPs) affect the expression of neurotrophin receptors in sympathetic neurons (Kobayashi et al., 1998). In this study, we examined the possibility that similar interactions might regulate the morphological development of these neurons. Under control conditions, embryonic rat sympathetic neurons formed axons but not dendrites; cells exposed to RA had a similar appearance. Profuse dendritic growth was observed upon exposure to BMP-7, and this was reduced by approximately 70% by RA. This inhibitory effect of RA was mediated primarily by retinoic acid receptors (RARs) and it exhibited substantial specificity because it was not associated with changes in either axonal elongation or cell survival. Moreover, mRNAs for enzymes required for synthesis of RA were expressed in the sympathetic neurons and retinoid activity was released from superior cervical ganglia. These observations suggest that retinoids may function as endogenous morphogens and regulate neural cell shape and polarity in developing sympathetic ganglia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号