首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction, binding, and colocalization of two or more molecules in living cells are essential aspects of many biological molecular processes, and single-molecule technologies for investigating these processes in live cells, if successfully developed, would become very powerful tools. Here, we developed simultaneous, dual-color, single fluorescent molecule colocalization imaging, to quantitatively detect the colocalization of two species of individual molecules. We first established a method for spatially correcting the two full images synchronously obtained in two different colors, and then for overlaying them with an accuracy of 13 nm. By further assessing the precision of the position determination, and the signal/noise and signal/background ratios, we found that two single molecules in dual color can be colocalized to within 64-100 nm (68-90% detectability) in the membrane of cells for GFP and Alexa633. The detectability of true colocalization at the molecular level and the erroneous inclusion of incidental approaches of two molecules as colocalization have to be compromised at different levels in each experiment, depending on its purpose. This technique was successfully demonstrated in living cells in culture, monitoring colocalization of single molecules of E-cadherin fused with GFP diffusing in the plasma membrane with single molecules of Alexa633 conjugated to anti-E-cadherin Fab externally added to the culture medium. This work established a benchmark for monitoring the colocalization of two single molecules, which can be applied to wide ranges of studies for molecular interactions, both at the levels of single molecules and collections of molecules.  相似文献   

2.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

3.
In this report, we applied a special localization microscopy technique (Spectral Precision Distance/Spatial Position Determination Microscopy/SPDM) to quantitatively analyze the effect of influenza A virus (IAV) infection on the spatial distribution of individual HGFR (Hepatocyte Growth Factor Receptor) proteins on the membrane of human epithelial cells at the single molecule resolution level. We applied this SPDM method to Alexa 488 labeled HGFR proteins with two different ligands. The ligands were either HGF (Hepatocyte Growth Factor), or IAV. In addition, the HGFR distribution in a control group of mock-incubated cells without any ligands was investigated. The spatial distribution of 1 × 106 individual HGFR proteins localized in large regions of interest on membranes of 240 cells was quantitatively analyzed and found to be highly non-random. Between 21% and 24% of the HGFR molecules were located in 44,304 small clusters with an average diameter of 54 nm. The mean density of HGFR molecule signals per individual cluster was very similar in control cells, in cells with ligand only, and in IAV infected cells, independent of the incubation time. From the density of HGFR molecule signals in the clusters and the diameter of the clusters, the number of HGFR molecule signals per cluster was estimated to be in the range between 4 and 11 (means 5–6). This suggests that the membrane bound HGFR clusters form small molecular complexes with a maximum diameter of few tens of nm, composed of a relatively low number of HGFR molecules. This article is part of a Special Issue entitled: Viral Membrane Proteins — Channels for Cellular Networking.  相似文献   

4.
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments.  相似文献   

5.
Single molecule characterization of P-selectin/ligand binding   总被引:13,自引:0,他引:13  
P-selectin expressed on activated platelets and vascular endothelium mediates adhesive interactions to polymorphonuclear leukocytes (PMNs) and colon carcinomas critical to the processes of inflammation and blood-borne metastasis, respectively. How the overall adhesiveness (i.e. the avidity) of receptor/ligand interactions is controlled by the affinity of the individual receptors to single ligands is not well understood. Using single molecule force spectroscopy, we probed in situ both the tensile strength and off-rate of single P-selectin molecules binding to single ligands on intact human PMNs and metastatic colon carcinomas and compared them to the overall avidity of these cells for P-selectin substrates. The use of intact cells rather than purified proteins ensures the proper orientation and preserves post-translational modifications of the P-selectin ligands. The P-selectin/PSGL-1 interaction on PMNs was able to withstand forces up to 175 pN and had an unstressed off-rate of 0.20 s(-1). The tensile strength of P-selectin binding to a novel O-linked, sialylated protease-sensitive ligand on LS174T colon carcinomas approached 125 pN, whereas the unstressed off-rate was 2.78 s(-1). Monte Carlo simulations of receptor/ligand bond rupture under constant loading rate for both P-selectin/PSGL-1 and P-selectin/LS174T ligand binding give distributions and mean rupture forces that are in accord with experimental data. The pronounced differences in the affinity for P-selectin/ligand binding provide a mechanistic basis for the differential abilities of PMNs and carcinomas to roll on P-selectin substrates under blood flow conditions and underline the requirement for single molecule affinity measurements.  相似文献   

6.
Human umbilical vein endothelial cells (ECs) adhere in vitro to proteins of the extracellular matrix including fibronectin (fn) and vitronectin (vn). Specific receptors for fn and vn have been previously characterized. These receptors belong to a family of membrane glycoproteins characterized (a) by being a transmembrane complex of two noncovalently linked subunits and (b) by recognizing the tripeptide Arg-Gly-Asp on their respective ligands. In this paper we investigated how vn and fn control the organization of their respective receptors over the surface of ECs. It was found that the clustering of individual receptors and the organization thereafter of focal contacts occurred only when ECs were exposed to the specific ligand and did not occur on the opposite ligand. The shape of receptor clusters was slightly different and a colocalization of the two receptors was found when ECs were cultured on a mixed matrix of fn plus vn. Adhesion was selectively inhibited by vn or fn receptor antibodies on their respective substrates. The clustering of both receptors preceded the association of vinculin with focal contacts and stress fiber formation. Also, the vn receptor, in the absence of associated fn receptor, was capable of inducing the organization of the membrane-microfilament interaction complex. Overall, these results indicate that individual matrix ligands induce only the clustering of their respective membrane receptors. The clustering of only one receptor is capable of supporting the subsequent formation of focal contacts and the local assembly of related cytoskeletal proteins.  相似文献   

7.
Vyas N  Mollereau C  Chevé G  McCurdy CR 《Peptides》2006,27(5):990-996
Neuropeptide FF, a member of the RFamide family of peptides, has demonstrated an interesting array of pharmacological effects. To date however, little information has been obtained as to the exact pharmacological roles of the individual NPFF1 and NPFF2 receptors. Through peptide analogs of NPFF and related peptides, the essential pharmacophore has emerged somewhat. Yet, the field is lacking small molecule ligands selective for each receptor. This review of the structure-activity relationships of the reported NPFF peptide analogs and some non-selective small molecule ligands highlights the current understanding of the pharmacophoric elements required for affinity and activity at the NPFF receptors. The lack of mutagenesis data on the receptor as well as a crystal structure has also hindered the understanding of ligand recognition at the receptor level. If the targets can be further investigated as to their requirements for ligand recognition, the successful development of highly selective ligands should follow.  相似文献   

8.
Interchromosomal interactions and olfactory receptor choice   总被引:25,自引:0,他引:25  
The expression of a single odorant receptor (OR) gene from a large gene family in individual sensory neurons is an essential feature of the organization and function of the olfactory system. We have used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes. DNA and RNA fluorescence in situ hybridization (FISH) experiments allow us to visualize the colocalization of the H enhancer with the single OR allele that is transcribed in a sensory neuron. In transgenic mice bearing additional H elements, sensory neurons that express OR pseudogenes also express a second functional receptor. These data suggest a model of receptor choice in which a single trans-acting enhancer element may allow the stochastic activation of only one OR allele in an olfactory sensory neuron.  相似文献   

9.
Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival.  相似文献   

10.
Chen YZ  Zhi DG 《Proteins》2001,43(2):217-226
Ligand-protein docking has been developed and used in facilitating new drug discoveries. In this approach, docking single or multiple small molecules to a receptor site is attempted to find putative ligands. A number of studies have shown that docking algorithms are capable of finding ligands and binding conformations at a receptor site close to experimentally determined structures. These algorithms are expected to be equally applicable to the identification of multiple proteins to which a small molecule can bind or weakly bind. We introduce a ligand-protein inverse-docking approach for finding potential protein targets of a small molecule by the computer-automated docking search of a protein cavity database. This database is developed from protein structures in the Protein Data Bank (PDB). Docking is conducted with a procedure involving multiple-conformer shape-matching alignment of a molecule to a cavity followed by molecular-mechanics torsion optimization and energy minimization on both the molecule and the protein residues at the binding region. Scoring is conducted by the evaluation of molecular-mechanics energy and, when applicable, by the further analysis of binding competitiveness against other ligands that bind to the same receptor site in at least one PDB entry. Testing results on two therapeutic agents, 4H-tamoxifen and vitamin E, showed that 50% of the computer-identified potential protein targets were implicated or confirmed by experiments. The application of this approach may facilitate the prediction of unknown and secondary therapeutic target proteins and those related to the side effects and toxicity of a drug or drug candidate. Proteins 2001;43:217-226.  相似文献   

11.
The epidermal growth factor (EGF)-like family of growth factors elicits cellular responses by stimulating the dimerization, autophosphorylation, and tyrosine kinase activities of the ErbB family of receptor tyrosine kinases. Although several different EGF-like ligands are capable of binding to a single ErbB family member, it is generally thought that the biological and biochemical responses of a single receptor dimer to different ligands are indistinguishable. To test whether an ErbB receptor dimer is capable of discriminating among ligands we have examined the effect of four EGF-like growth factors on signaling through the ErbB4 receptor homodimer in CEM/HER4 cells, a transfected human T cell line ectopically expressing ErbB4 in an ErbB-null background. Despite stimulating similar levels of gross receptor tyrosine phosphorylation, the EGF-like growth factors betacellulin, neuregulin-1beta, neuregulin-2beta, and neuregulin-3 exhibited different biological potencies in a cellular growth assay. Moreover, the different ligands induced different patterns of recruitment of intracellular signaling proteins to the activated receptor and induced differential usage of intracellular kinase signaling cascades. Finally, two-dimensional phosphopeptide mapping of ligand-stimulated ErbB4 revealed that the different growth factors induce different patterns of receptor tyrosine phosphorylation. These results indicate that ErbB4 activation by growth factors is not generic and suggest that individual ErbB receptors can discriminate between different EGF-like ligands within the context of a single receptor dimer. More generally, our observations significantly modify our understanding of signaling through receptor tyrosine kinases and point to a number of possible models for ligand-mediated signal diversification.  相似文献   

12.
Luo ZP  Sun YL  Fujii T  An KN 《Biorheology》2004,41(3-4):247-254
Type II collagen and hyaluronan are the two major components of extracellular molecules in cartilage and play an important role in mechanical functions of extracellular matrix. Currently, their mechanical properties have been investigated only at the gross-level. In this study, the mechanical properties of single type II collagen and hyaluronan molecules were directly measured using optical tweezers technique. The persistence length was found to be 11.2+/-8.4 nm in type II collagen and 4.5+/-1.2 nm in hyaluronan. This result suggested that type II collagen is stiffer than hyaluronan at the individual molecule level, which supports the general concept that collagen is responsible for resisting tensile force. The experimental system developed here also provides a powerful tool for quantifying mechanical properties of extracellular matrix at the single molecule level.  相似文献   

13.
The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin–proteasome system.  相似文献   

14.
Inhibition of multiple signaling pathways in a cancer cell with a single molecule could result in better therapies that are simpler to administer. Efficacy may be achieved with reduced potency against individual targets if there is synergy through multiple pathway inhibition. To achieve this, it is necessary to be able to build multi-component ligands by joining together key pharmacophores in a way which maintains sufficient activity against the individual pathways. In this work, designed triple inhibiting ligands are explored aiming to block three completely different target types: a kinase (JAK2), an epigenetic target (HDAC) and a chaperone (HSP90). Although these enzymes have totally different functions they are related through inter-dependent pathways in the developing cancer cell. Synthesis of several complex multi-inhibiting ligands are presented along with initial enzyme inhibition data against 3 biological target classes of interest. A lead compound, 47, was discovered which had low micromolar activity for all 3 targets. Further development of these complex trispecific designed multiple ligands could result in a ‘transient drug’, an alternative combination therapy for treating cancer mediated via a single molecule.  相似文献   

15.
Several lines of evidence suggested that the first gamma-aminobutyric acid B receptor to be cloned required an additional factor for functional expression. GABA(B1) was retained within the endoplasmic reticulum and failed to couple to signal transduction pathways on stimulation with agonists. In radioligand binding experiments it was found that although the affinity of antagonists showed a close agreement between rat brain membranes and membranes expressing the cloned receptor, agonist ligands were significantly weaker at recombinant receptors. Using the C-terminal tail as bait, a yeast two-hybrid screen was run against a human brain cDNA library and identified a second receptor, GABA(B2), as a major interacting protein. This interaction was confirmed by coimmunoprecipitation as well as extensive colocalization studies. Coexpression of the two seven-transmembrane proteins generated a fully functional receptor, which was expressed at the cell surface confirming the importance of receptor heterodimerization for GABA(B) receptor activity.  相似文献   

16.
Several lines of evidence suggested that the first gamma-aminobutyric acid B receptor to be cloned required an additional factor for functional expression. GABA(B1) was retained within the endoplasmic reticulum and failed to couple to signal transduction pathways on stimulation with agonists. In radioligand binding experiments it was found that although the affinity of antagonists showed a close agreement between rat brain membranes and membranes expressing the cloned receptor, agonist ligands were significantly weaker at recombinant receptors. Using the C-terminal tail as bait, a yeast two-hybrid screen was run against a human brain cDNA library and identified a second receptor, GABA(B2), as a major interacting protein. This interaction was confirmed by coimmunoprecipitation as well as extensive colocalization studies. Coexpression of the two seven-transmembrane proteins generated a fully functional receptor, which was expressed at the cell surface confirming the importance of receptor heterodimerization for GABA(B) receptor activity.  相似文献   

17.
Dynamic force microscopy (DFM) was used to image human rhinovirus HRV2 alone and complexed with single receptor molecules under near physiological conditions. Specific and site-directed immobilization of HRV2 on a model cell membrane resulted in a crystalline arrangement of virus particles with hexagonal symmetry and 35 nm spacing. High-resolution imaging of the virus capsid revealed about 20 resolvable structural features with 3 nm diameters; this finding is in agreement with protrusions seen by cryo-electron microscopy. Binding of receptor molecules to individual virus particles was observed after injection of soluble receptors into the liquid cell. Virus-receptor complexes with zero, one, two, or three attached receptor molecules were resolved. The number of receptor molecules associated to virions increased over time. Occasionally, dissociation of single receptor molecules from viral particles was also observed.  相似文献   

18.
The lateral organization of receptors on cell surfaces is critically important to their function; many receptors transmit transmembrane signals when redistributed into clusters, while the response of others is potentiated by their aggregation. Cell-cell contact can play a crucial role in receptor aggregation, even when the bonds between receptors on one cell and ligands on the other are monovalent. Monte Carlo simulations on a two-membrane model were carried out to determine whether weak enthalpic interactions among receptors in one membrane, and among ligands in another, can work synergistically to give large-scale clustering when the two membranes are brought into contact. The simulations give support to such a clustering mechanism. In addition, because clustering is a cooperative process akin to a phase separation, individual receptors and ligands may undergo repeated binding and unbinding while in a clustered "phase," and a single ligand could interact with multiple different receptor partners. The results suggest a resolution of the dichotomy between serial triggering and aggregation models of T cell activation.  相似文献   

19.
Knowledge of drug–target interaction is critical to our understanding of drug action and can help design better drugs. Due to the lack of adequate single‐molecule techniques, the information of individual interactions between ligand‐receptors is scarce until the advent of atomic force microscopy (AFM) that can be used to directly measure the individual ligand‐receptor forces under near‐physiological conditions by linking ligands onto the surface of the AFM tip and then obtaining force curves on cells. Most of the current AFM single‐molecule force spectroscopy experiments were performed on cells grown in vitro (cell lines) that are quite different from the human cells in vivo. From the view of clinical practice, investigating the drug–target interactions directly on the patient cancer cells will bring more valuable knowledge that may potentially serve as an important parameter in personalized treatment. Here, we demonstrate the capability of AFM to measure the binding force between target (CD20) and drug (rituximab, an anti‐CD20 monoclonal antibody targeted drug) directly on lymphoma patient cancer cells under the assistance of ROR1 fluorescence recognition. ROR1 is a receptor expressed on some B‐cell lymphomas but not on normal cells. First, B‐cell lymphoma Raji cells (a cell line) were used for ROR1 fluorescence labeling and subsequent measurement of CD20‐rituximab binding force. The results showed that Raji cells expressed ROR1, and the labeling of ROR1 did not influence the measurement of CD20‐rituximab binding force. Then the established experimental procedures were performed on the pathological samples prepared from the bone marrow of a follicular lymphoma patient. Cancer cells were recognized by ROR1 fluorescence. Under the guidance of fluorescence, with the use of a rituximab‐conjugated tip, the cellular topography was visualized by using AFM imaging and the CD20‐Rituximab binding force was measured by single‐molecule force spectroscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Single chromatin fibers were assembled directly in the flow cell of an optical tweezers setup. A single lambda phage DNA molecule, suspended between two polystyrene beads, was exposed to a Xenopus laevis egg extract, leading to chromatin assembly with concomitant apparent shortening of the DNA molecule. Assembly was force-dependent and could not take place at forces exceeding 10 pN. The assembled single chromatin fiber was subjected to stretching by controlled movement of one of the beads with the force generated in the molecule continuously monitored with the second bead trapped in the optical trap. The force displayed discrete, sudden drops upon fiber stretching, reflecting discrete opening events in fiber structure. These opening events were quantized at increments in fiber length of approximately 65 nm and are attributed to unwrapping of the DNA from around individual histone octamers. Repeated stretching and relaxing of the fiber in the absence of egg extract showed that the loss of histone octamers was irreversible. The forces measured for individual nucleosome disruptions are in the range of 20-40 pN, comparable to forces reported for RNA- and DNA-polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号