首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DESHPANDE  B. P. 《Annals of botany》1974,38(1):151-158
The differentiating sieve plate in the phloem of the stolonof Saxifraga sarmentosa L. was studied with the electron microscope.Development of the pore site begins with differentiation ofa pair of collar-like areas around the plasmodesma which canbe seen in the youngest identifiable sieve plates. Further growthof the collars occurs by deposition of an amorphous substance,presumably caflose. Although the growth of the collars is simultaneouswith the growth of the surrounding cell wall it is rapid atfirst and the pore sites appear asdome-shaped protuberances.It also involves deposition of callose over an increasinglywider area of the cell wall and since the thickening of thenormal cell wall continues only where notcovered by callose,the collars assume a conical form. There seems to be no displacementor lysis of normal cell wall material during growth of the collars.Eventually the growth of the cell wall in thickness overtakesthe pore sites so that when the growth of the cell wall is completethe pore sites appear as depressions in the sieve plate. Theperforation of a pore site is accomplished by widening of theplasmodesmatal cylinder which begins at the middle lamella byremoval of callose. Endoplasmic reticulum is found in closeproximity to the plasmodesma andis believed to penetrate it.  相似文献   

2.
WALSH  M. A 《Annals of botany》1980,46(5):557-565
Decortication of embryonic roots of 4- to 5-day-old Zea seedlingsand subsequent chemical fixation permitted comparison of cutand uncut developing sieve elements In a decorticated root wheresieve tubes are not severed, metaphloem sieve elements in latestates of development and some mature sieve elements exhibita highly vacuolate condition When roots are cut or diced inthe course of fixation intact vacuoles are not observed in latestages of sieve-element ontogeny The degree of callose formationat sites of developing sieve-plate pores and in the pores ofmature sieve elements varies greatly with both decorticationand non-decortication treatments Nuclei were not observed insieve elements at the electron microscope level, but they wereseen at the light microscope level in serial sections of sieveelements in the late to mature developmental stages representedAlthough the occurrence and distribution of plastids, mitochondria,endoplasmic reticulum, dictyosomes and nbosomes also vanes insieve elements of decorticated roots, disruption or surgingof sieve-element contents is greater for sieve tubes that aresevered during fixation treatment A discussion is presentedrelating effects of trauma on observed developmental stagesand sieve-element structure Zea mays L, maize, corn, phloem, Sieve elements, tonoplast, ultrastructure  相似文献   

3.
Both intact and cut duckweed plants were prepared for electron microscopy. Plants which are prepared intact do not exhibit callose formation during development of sieve-plate pores. Future pore sites can be recognized by the presence of median cavities that are unassociated with callose platelets. These cavities are first seen in the region of the compound middle lamella and are lined by a plasmalemma. As end walls thicken, the cavities increase in size until open pores of uniform width are formed. Mature sieve plates of intact-prepared plants are also devoid of callose. Fully opened pores are lined by a plasmalemma and are only traversed by an occasional tubule of endoplasmic reticulum. Plants which have been cut prior to fixation possess mature sieve plates containing callose. The pores of developing sieve plates in cut plants exhibit small amounts of callose. Except for the lack of callose, lateral wall connections between sieve elements and contiguous cells are similar in development and mature state to those reported for other species.  相似文献   

4.
Sieve-pore development was examined in four species of leptosporangiate ferns: Phlebodium aureum, Platycerium bifurcatum, Pityrogramma calomelanos, and Regnellidium diphyllum. In all four species, sieve-pore development is initiated with the formation of a barrel-shaped periplasmodesmatal region—bounded by a narrow, electron-dense band—around the prepore plasmodesma. This phase is followed by the deposition of callose, or of a calloselike substance, around the prepore plasmodesma. With deposition of this substance, the periplasmodesmatal region is no longer discernible, but an electron-dense band continues to border the pore site. Perforation of the pore site involves removal of the calloselike substance and widening of the plasmodesmatal canal, both processes occurring more or less uniformly along the entire length of the pore site. During widening of the plasmodesmatal canal, numerous membranous elements appear within the pore. The number of membranous elements within the pore appears to decrease with increasing age of the sieve element. The location of feeding aphid (Myzus persicae) mouth-parts indicates that the conducting sieve elements in Pellaea viridis are mature cells interconnected by membrane-containing, callose-free sieve pores.  相似文献   

5.
Phloem translocation rates in field-grown cotton (Gossypium hirsutum L.) dropped from morning to afternoon and continued to decline toward evening, except that recovery occurred following the hottest afternoon when the maximum temperature was 44 C. Water deficits increased from morning to evening, and severity of deficits generally were proportional to daytime heating. Water stress contributed toward reducing translocation but was not always the governing factor. Callose breakdown appeared to be slower than heat-induced synthesis, and in the evening callose still reflected the influence of high afternoon temperatures. Translocation was considerably reduced when about 50% or more of the hypocotyl sieve plates had large amounts of callose. While heat-induced callose may have reduced translocation because of sieve plate pore constriction, temperatures of 39 to 44 C appeared to inhibit an additional component of translocation as well, possibly in the leaf blade.  相似文献   

6.
The differentiation and obliteration of protophloem sieve elementsin leaves of the grass Aegilops comosa var. thessalica havebeen studied by electron microscopy. These elements differentiatesimilarly to metaphloem sieve elements of the same plant andother monocotyledons. Plasmalemma, smooth endoplasmic reticulum(ER), mitochondria, P-type plastids and sometimes nuclear remnantsconstitute the protoplasmic components at maturity, all areperipherally distributed. The differentiation of end walls intosieve plates and the presence of sieve areas on the lateralwalls indicate that protophloem sieve elements are componentsof sieve-tube. They may be functional for a brief period butsoon after their maturation they are compressed and finallyobliterated by the stretching of actively-growing surroundingcells. The protoplasmic components of mature elements degenerateand are destroyed during obliteration of the sieve elements. Aegilops comosa var. thessalica, protophloem, sieve elements, differentiation, ultrastructure  相似文献   

7.
The changes in structure of the endoplasmic reticulum (ER) andits associations with other cell components have been studiedin differentiating protophloem sieve elements of root tips ofTriticum aestivum. In the young sieve elements single ER cisternaebearing ribosomes are dispersed in the cytoplasm. As differentiationprogresses ER increases in amount while a small proportion ofit aggregates into stacks or becomes associated with the nuclearenvelope and the mitochondria. These modifications occur inthe last two sieve elements containing ribosomes and coincidewith most dramatic changes in the degenerating nucleus. Stacksconsist of relatively few ER cisternae and may be encounteredfree in the cytoplasm or applied to the nuclear envelope. Electron-densematerial accumulates between the contiguous cisternae of thestacks. ER-attached ribosomes persist even in nearly maturesieve elements, but their pattern of arrangement becomes changed.The structural evidence indicates that only a few highly degradedER elements are retained in fully mature sieve elements. Triticum aestivum, root protophloem, sieve elements, endoplasmic reticulum, differentiation  相似文献   

8.
A Study of wound reaction of the metaphloem of the stem by white-light,fluorescence, and electron microscopy provides evidence forthe structure of mature sieve elements in the intact plant.Starch grains usually are retained in plastids which are locatedagainst the lateral walls of sieve elements and concentratedat both ends of each cell. Slime plugs and dense connectingstrands in the sieve plates seem to result from reactions tocutting or penetration of the killing agent; after appropriatemethods of killing, the contents of a connecting strand maybe only slightly denser, if any, than the milieu on either sideof the sieve plate. A strange accumulation of slime, consistingof streamers directed toward the wound surface from each sieveplate, occurred in tissue boiled immediately after incisionof the phloem. Callose is present in sieve elements of intactplants when the tissue is killed within 4 seconds after injury.Callose is accumulated in response to wounding in added amounts,but only after 5 minutes or more and only within about 15 sieveelements from the wound. Quantities of callose sufficient forplugging the sieve plate accumulate after 30 minutes or more.Sieve-plate callose and deposits on the nearby lateral wallsproduce a cup-shaped mass which is called a cup deposit.  相似文献   

9.
The differentiation of the protophloem in 9- to 14-day-old adventitious roots of Salix viminalis was studied. Ultrastructural observations were mainly made on longitudinal serial sections through an uninterrupted file of 32 differentiating sieve elements. The first cell in the file was located about 50 μm from the apical meristem. At an early stage the nucleus was lobed in outline, and in older cells the nucleoplasm became electron lucent. In the first or second cell from the first mature sieve element the nuclear envelope broke open. The nucleoli decreased gradually in size and disappeared finally. From the 9th cell the plastids contained starch and grew somewhat in size. ER increased in amount and began to form stacks in the 20th cell. These stacks moved to a peripheral position. Callose platelets were first observed on the transverse walls in cell 18. Flattened ER-cisternae covered the sieve pore sites. Gradually the middle lamella was dissolved and the callose aggregations formed cylinders around the pores of the sieve plate. Aggregations of tubular P-protein were present from cell 15. P-protein bodies were also present in parenchyma cells adjoining mature sieve elements. The only cell components remaining in mature sieve elements were plastids, mitochondria, stacked ER, the plasmalemma, remnants of other membranes and bodies consisting of P-protein and of an unidentified granular material. The sieve elements had no ontogenetically related companion cells. At a level where both metaphloem and metaxylem had matured the first formed protophloem sieve elements remained intact.  相似文献   

10.
The aerial shoots of Equisetum hyemale L. var. affine (Engelm.)A. A. Eat. were examined with the electron microscope as partof a continuing study of sieveelement development in the lowervascular plants. Young E. hyemale sieve elements are distinguishablefrom all other cell types within the vascular system by thepresence of refractive spherules, proteinaceous bodies whichdevelop within dilated portions of the endoplasmic reticulum(ER). Details of cell wall thickening differ between protophloemand metaphloem sieve elements. Following cell wall thickeningthe ER increases in quantity and aggregates into stacks. Shortlythereafter, nuclear degeneration is initiated. During the periodof nuclear degeneration some cytoplasmic components-dictyosomes,microtubules and ribosomes-degenerate and disappear, while organellessuch as mitochondria and plastids persist. The latter undergostructural modifications and become parietal in distribution.Eventually the massive quantities of ER are reduced, leavingthe lumen of the cell clear in appearance. At maturity the plasmalemma-linedsieve element contains a parietal network of tubular ER, aswell as mitochondria, plastids, and refractive sphemh At thistime many of the spherules are discharged into the region ofthe wall. Sieveelement pores occur in both lateral and end walls.At maturity many pores are traversed by large numbers of ERmembranes. The metaphloem sieve elements of the mid-internodalregions apparently are sieve-tube members. The connections betweenmature protophloem sieve elements and pericycle cells are associatedwith massive wall thickenings on the pericyclecell side.  相似文献   

11.
According to an established concept, injury of the phloem triggers local sieve plate occlusion including callose-mediated constriction and, possibly, protein plugging of the sieve pores. Sieve plate occlusion can also be achieved by distant stimuli, depends on the passage of electropotential waves (EPWs), and is reversible in intact plants. The time-course of the wound response was studied in sieve elements of main veins of intact Vicia faba plants using confocal and multiphoton microscopy. Only 15-45 s after burning a leaf tip, forisomes (giant protein bodies specific for legume sieve tubes) suddenly dispersed, as observed at 3-4 cm from the stimulus site. The dispersion was reversible; the forisomes had fully re-contracted 7-15 min after burning. Meanwhile, callose appeared at the sieve pores in response to the heat shock. Callose production reached a maximum after approximately 20 min and was also reversible; callose degraded over the subsequent 1-2 h. The heat induction of both modes of occlusion coincided with the passage of an EPW visualized by electrophysiology or the potential-sensitive dye RH-414. In contrast to burning, cutting of the leaf tip induced neither an EPW nor callose deposition. The data are consistent with a remote-controlled occlusion of sieve plates depending on the longitudinal propagation of an EPW releasing Ca(2+) into the sieve element lumen. It is hypothesized that forisome plugs and callose constriction are removed once the cytosolic calcium level has returned to the initial level in those sieve tubes.  相似文献   

12.
DESHPANDE  B. P. 《Annals of botany》1984,53(2):237-248
A study has been made of the structure of the sieve tubes inthe phloem of seedlings of Cucurbita maxima kept in total darknessfor 2 or 3 days. All cytoplasmic components were found to beparietal in their distribution. The parietal system was closelyapplied to the cell membrane and appeared to be supported bya continuous framework of endoplasmic reticulum (ER) with whichP-protein was intimately associated. The ER-P-protein complexwas highly compact in some sieve elements and loosened to variousdegrees in others. The pores in the sieve plates were eitherunobstructed or occluded by components of the parietal complexin various ways, occlusion not always being accompanied by noticeabledisruption of the parietal system. In visibly undisturbed sievetubes, in which the ER-P-protein complex was in a highly compactstate, occlusion appeared accidental, arbitrary and withoutany alignment of the components present in the pores. It issuggested that the distribution of the cytoplasmic componentsin the parietal position represents a true-to-life conditionof the sieve tube, preserved due to control of the ‘surge’artefact to which transporting sieve tubes are susceptible.However, the organization of sieve tube probably changes withthe state of transport and the highly compact condition of theER-P-protein complex as well as unobstructed or arbitrarilyobstructed sieve plate pores represent a state of ‘rest’or low transport. Cucurbita maxima, P-protein, sieve elements, phloem, seedlings  相似文献   

13.
Koh EJ  Zhou L  Williams DS  Park J  Ding N  Duan YP  Kang BH 《Protoplasma》2012,249(3):687-697
Huanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate. We examined citrus leaf phloem cells by microscopy methods to characterize plant responses to Liberibacter infection and the contribution of these responses to the pathogenicity of HLB. Plasmodesmata pore units (PPUs) connecting companion cells and sieve elements were stained with a callose-specific dye in the Liberibacter-infected leaf phloem cells; callose accumulated around PPUs before starch began to accumulate in the chloroplasts. When examined by transmission electron microscopy, PPUs with abnormally large callose deposits were more abundant in the Liberibacter-infected samples than in the uninfected samples. We demonstrated an impairment of symplastic dye movement into the vascular tissue and delayed photoassimilate export in the Liberibacter-infected leaves. Liberibacter infection was also linked to callose deposition in the sieve plates, which effectively reduced the sizes of sieve pores. Our results indicate that Liberibacter infection is accompanied by callose deposition in PPUs and sieve pores of the sieve tubes and suggest that the phloem plugging by callose inhibits phloem transport, contributing to the development of HLB symptoms.  相似文献   

14.
Roots of Equisetum hyemale L. var. affine (Engelm.) A. A. Eat. were fixed in glutaraldehyde, postfixed in osmium tetroxide, and sieve elements of various ages were examined with the electron microscope. Young sieve elements are distinguished by their position within the vascular cylinder and by the presence of numerous refractive spherules, which originate within dilated portions of the endoplasmic reticulum (ER). Early in development, the sieve-element walls undergo a substantial increase in thickness. This is followed by the appearance of massive ER aggregates in the cytoplasm and then by a phase involving stacking and sequestering of the remaining ER. Nuclear degeneration is initiated shortly after the appearance of the ER aggregates. The chromatin condenses into masses of variable size along the inner surface of the nuclear envelope. The envelope then ruptures and chromatin is released into the cytoplasm. During the period of nuclear degeneration, mitochondria and plastids undergo structural modification, while components such as dictyosomes, microtubules, and ribosomes degenerate and disappear. The remaining cytoplasmic components assume a parietal position in the cell, leaving the lumen of the cell clear in appearance. At maturity, the plasmalemma-lined sieve element contains plastids, mitochondria, some ER, and refractive spherules. At this time many of the refractive spherules are discharged into the region of the wall. Pores between sieve elements occur largely on the end walls. During pore development, tubules of ER apparently traverse the pores, but because of the presence of massive callose deposits in the material examined, the true condition of mature pores could not be determined. The connections between mature sieve elements and pericycle cells are characterized by the presence of massive wall thickenings on the pericycle-cell side. Plasmodesmata in the wall thickening are matched by pores on the sieve-element side. Ontogenetic and cytoplasmic factors argue against use of the term “companion cell” for the vascular parenchyma cells associated with the sieve elements.  相似文献   

15.
ENGLEMAN  E. MARK 《Annals of botany》1965,29(1):103-104
The sieve elements arise from vacuolate cells, and enlargementof one or more slime bodies increases the volume of cytoplasmrelative to that of the vacuole. The slime finally dispersesthroughout the region once occupied by the vacuole. A new term,mictoplasm, is proposed for the resulting mixture of non-membranouscytoplasmic material, including slime, with the contents ofthe vacuole. The nucleus disappears during development, butbefore losing its chromaticity, it apparently releases one ormore nucleoli into the cytoplasm. The extruded nucleoli areprominent during development but usually disappear with thetonoplast, nucleus, and dictyosomes as the cell matures. Atmaturity, small vesicles, plastids containing spherical starchgrains, and sparsely distributed mitochondria deficient in tubulesare attached to the plasmalemma. The sieve-plate connectingstrand develops in a pore site bearing a pair of callose plateletsand penetrated in the centre by a plasmodesms. The callose cylinderwhich surrounds the mature connecting strand is followed sothat the shape of a connecting strand in cross section is stellate.Mictoplasm and the plasmalemma are continuous from one cellto the next through the sieve-plate connecting strands.  相似文献   

16.
During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely.  相似文献   

17.
The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.Key words: Arabidopsis thaliana, callose, callose synthase, glucan synthase-like, phloem, plasmodesmata, sieve plate  相似文献   

18.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

19.
The primary phloem of young internodes of Cucurbita maxima wasstudied with the electron microscope. Phloem parenchyma cellsare highly vacuolated and contain nuclei, endoplasmic reticulum,ribosomes, mitochondria, chloro-plasts, and occasional dictyosomes.As compared with parenchyma cells, the most distinctive featuresof companion cells are their extremely dense cytoplasm, lowdegree of vacuolation, lack of chloroplasts, and numerous sieve-elementconnexions. Companion cells contain plastids with few internalmembranes. At maturity the enucleate sieve element is linedby a plasmalemma, one or more cistema-like layers of endoplasmicreticulum, and a membrane which apparently delimits the parietallayer of cytoplasm from a large central cavity. In OsO4–-andglutaraldehyde-fixed elements, the central cavity is traversedby numerous strands, which run from cell to cell through thepores of sieve plates and lateral sieve areas, and which arederived ontogenetically from the slime bodies of immature cells.Numerous normal-appearing mitochondria are present in the parietallayer of cytoplasm. The pores of sieve plates and lateral sieveareas are lined with cytoplasm. The ultrastructural detailsof young sieve elements differ little from those of other youngnucleate cells. During sieve-element development, the sieveelement increases in vacuolation. At the same time, slime bodiesdevelop in the cytoplasm. With glutaraldehyde fixation, thesebodies often exhibit a double-layered limiting membrane. Asthe sieve element continues to differentiate, the slime bodiesincrease in size and the parietal layer of cytoplasm becomesvery narrow. Presently, the slime bodies begin to disperse andtheir contents fuse. This phenomenon occurs in the parietallayer of cytoplasm, while the latter is still delimited fromthe large central vacuole by a distinct tonoplast. The initiationof slime-body dispersal more or less coincides with perforationof the pore sites, and many pores are traversed by slime earlyin their development. Before slime-body dispersal, all dictyosomesand associated vesicles disappear from the cytoplasm. Eventually,the tonoplast diappears and the slime becomes distributed throughoutthe central cavity in the form of strands. Nuclei and ribosomesdisappear before breakdown of the tonoplast. Sieve elementsare connected with companion cells and parenchyma cells by plasmodesmata.  相似文献   

20.
Structure of the secondary phloem of Grewia tillaefolia Roxb.was studied in samples of bark collected at monthly intervalsfrom forest populations of Gujarat in western India. The secondaryphloem in this species is vertically storied and the axial elementsoccur as alternate tangential bands of fibres and sieve elementsproduced in succession. On average, two to four bands of fibresand corresponding bands of sieve elements are produced in ayear. The sieve elements function for more than one season anddifferent phloem increments are separated by terminal zonesmade up of very narrow sieve elements which mature just beforeand immediately after the period of dormancy. The tree becomesleafless about eight to ten weeks preceding the spring equinox.Cambial activity, phloem differentiation and phloem functionare suspended during this period. Differentiation of phloembegins after bud break which occurs in April, and continuesuntil January, but most of the phloem is produced between Julyand September when the rainy season is well advanced. The widthof the conducting zone is maximal at the end of the period ofgrowth when the tree is in full leaf. Inactivation of sieveelements, apparently by callose plugging the sieve plates, beginswith leaf abscission. The sieve elements produced in the precedingseason, just before dormancy is imposed resume function in thefollowing growing season and the older elements die. Companioncells and axial parenchyma cells surrounding sieve elementsappear to have s significant role during senescence of the conductingelements. The development and activity of the secondary phloemseem to be related to other developmental phenomena occurringwithin the tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号