首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A factorial experiment examined the effects of varying concentrations of the allelochemical rutin in caterpillars and the length of time the caterpillars had fed on the behavioral interactions of predatory stinkbugs (Podisus maculiventris) and their prey (Manduca sexta). Diet had no significant effect on defensive behavior of the caterpillars. The length of time that the caterpillars had fed (1 vs. 24 h) only influenced the frequency of caterpillars knocking the attacking stinkbugs away, with caterpillars knocking the stinkbugs away more often after 24 h of feeding. A second experiment tested the effects of diet (prey fed various concentrations of rutin), temperature (18° C and 28° C) and gender on consumption and growth parameters of fifth instar stinkbugs. At the cooler temperature, the bugs ate more, gained more weight but took twice as long to complete the stadium and consequently had reduced relative consumption and relative growth rates. Diet had no significant effect on biomass gained or stadium duration, but rutin-fed caterpillars did depress the stinkbugs' relative consumption rates. The effect of food quality on relative growth rate (RGR) was temperature dependent; rutin had no significant effect at the cooler temperature, but a high dose of rutin reduced RGR at the warmer temperature. Rutin had a greater negative impact on the females than the males. The effect of rutin on these predators was different than the effect on their prey (this study compared to Stamp (1990, 1992)): the negative effects of rutin seem to impact on the stinkbug's growth rather than on molting.  相似文献   

2.
Two diet experiments addressed the effects of allelochemical-fed prey (Manduca sexta caterpillars), temperature, and gender on performance of the insect predator, Podisus maculiventris. Two of the major allelochemicals in tomato were used: chlorogenic acid and tomatine. Predator performance was negatively affected by both chlorogenic acid-fed and tomatine fed-prey, and there were allelochemical by thermal regime interactions for both. Relative consumption rate and growth rate decreased at the higher levels of tomatine at the warmer thermal regime (summer conditions) but were unaffected at the cooler thermal regime (spring conditions). At the cooler thermal regime, stadium duration was prolonged when the predators were given chlorogenic acid-fed prey, but at the warmer thermal regime there was no such effect. There were several effects of gender: biomass gained, food consumed, relative growth rate and efficiency of conversion of ingested food to biomass were higher for females than males. Furthermore, the effects of thermal regime and tomatine on food consumption and biomass gained differed for females and males. In general, the hypothesis that generalist insect predators may be a selective pressure shaping host plant range of insect herbivores was supported by these results. But the occurrence of allelochemical by thermal regime interactions means that it will be difficult to determine the relative importance of plant chemistry versus predators on patterns of feeding specialization by herbivores without taking into account a third factor, temperature. Received: 20 March 1995 /Accepted: 2 August 1996  相似文献   

3.
the simultaneous effects on an insect herbivore (third instar tobacco hornwormManduca sexta (L.): Sphingidae) of temperature (daytime temperatures of 20 °C, 25 °C and 30 °C), a mineral that may play a role in plant defense (potassium) and a common allelochemical (rutin) were examined in a factorial experiment. To manipulate potassium levels, a modified diet with limited plant material was used as the base and KCl and rutin added. Temperature affected efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), time to head-capsule slippage, stadium duration, relative consumption rate (RCR) and relative growth rate (RGR) but not food consumed, biomass gained and approximate digestibility (AD). Potassium concentration influenced all of the variables except AD, time to head-capsule slippage (HCS), duration of the stadium and percent of stadium time to HCS. Rutin impacted negatively on all of the variables except food consumed. Compared to larvae on the non-rutin diets, fewer larvae fed rutin survived through molt initiation to ecdysis and fewer successfully completed ecdysis. Temperature and rutin had interactive effects for AD, ECD, RCR, RGR, time to HCS, and percent of stadium required to reach HCS. Rutin and potassium had interactive effects for biomass gained, RCR, ECI, time to HCS, duration of stadium, and percent of stadium required to reach HCS. Comparison of larval responses on an average potassium concentration (3.1%) versus high concentration (6.1%) showed that at the low daytime temperature increasing potassium concentration depressed biomass gained, but at the warmer temperatures potassium concentration had little effect unless rutin was present. In addition, potassium concentration had little impact on ECI unless rutin was present. These results indicate that significant interactive effects occur among temperature, potassium and rutin, and thus suggest that such interactive effects on larval performance may be common under field conditions, which are characterized by varying temperature and different concentrations of minerals and allelochemicals in hostplants.  相似文献   

4.
Prey species and prey diet affect growth of invertebrate predators   总被引:4,自引:0,他引:4  
1. The effects of prey species and leaf age used by prey on performance of two generalist invertebrate predators were studied. The focal plant was Plantago lanceolata , which contains iridoid glycosides.
2. Diet of the herbivorous prey influenced their growth rate.
3. The generalist herbivore ( Vanessa cardui ) and the novel-plant feeder ( Manduca sexta ) contained very low levels of iridoid glycosides in their haemolymph, whereas the specialist ( Junonia coenia ) levels were 50–150-fold higher.
4. Predatory stinkbugs ( Podisus maculiventris ) fed either the novel-plant feeder or the specialist exhibited similar developmental rates. However, stinkbugs ate less of the generalist but grew faster. The growth rate of the stinkbugs was higher when the caterpillar species were raised on the new-leaf powder diet, which contained twice as much protein and iridoid glycosides as the mature-leaf powder diet.
5. Jumping spiders ( Phidippus audax ) ate more mealworms ( Tenebrio molitor ) than specialist J. coenia caterpillars, fed either new- or mature-leaf powder diets, and could not gain weight when fed J. coenia.
6. These results indicate that prey quality was not determined solely by the iridoid glycoside concentration in the diet.  相似文献   

5.
We examined the effects of the presence of plant allelochemicals in prey diet, prey availability and supplemental plant material on the growth of the generalist predator Podisus maculiventris (Hemiptera: Pentatomidae). We tested two different nymphal stages of this predator. Third to fourth instar nymphs and fifth instar nymphs were fed a diet of prey (Manduca sexta larvae, Lepidoptera: Sphingidae) without allelochemicals in their diet or prey fed maximal levels of allelochemicals (tomatine, rutin and chlorogenic acid) found in their host plant (Lycopersicon esculentum). The nymphs were fed prey ad libitum, once every three days, or once every five days. They were given either no supplemental plant material or a 2 cm slice of green bean pod (Phaseolus vulgaris). We also conducted another experiment with fifth instar nymphs using the same conditions, except that mean levels of allelochemicals found in the host plant were fed to prey instead of maximal levels and the prey were provided either once a day or once every five days. For all experiments, prey scarcity depressed developmental rate, weight gain and relative growth rate. Overall, there was no negative effect of allelochemicals in the diet of the prey on these variables when predators were supplied with an excess of prey, but allelochemicals in the prey diet negatively affected these predators when prey were scarce. The addition of plant material to the diet of third to fourth instar nymphs did not have any effect on developmental rate, final dry weight, or relative growth rate. However, for fifth instar nymphs, the addition of plant material negatively affected these variables. Thus, the addition of plant material to the diet of the nymphs did not alleviate the negative effects of prey scarcity or allelochemicals in prey diet.  相似文献   

6.
Third instar tobacco hornworms (Manduca sexta L.: Sphingidae) on low dietary potassium had a lower relative growth rate than individuals on diets with potassium concentrations reflecting those in host-plants, due to decreased consumption rate, lower efficiencies of conversion of ingested and digested food (ECI and ECD), and a prolonged growth/feeding phase. Furthermore, these larvae, when placed on a diet with a moderate potassium concentration through the fourth stadium, ended up being smaller due to lower ECI and less biomass gained, and had a prolonged growth phase, which suggest an irreversible cost of the previous low potassium diet. Third instar hornworms on high potassium diets had lower ECI and ECD, and they had a prolonged growth phase. These individuals, when placed on a moderate potassium diet in the fourth stadium, gained less biomass, than those previously offered hostplant-like-potassium diets. Body potassium concentrations (% dw) at the end of the third stadium were similar among treatment groups. With increasing potassium concentrations in the diet, utilization efficiencies of potassium decreased and potassium concentrations in the frass increased. Correspondingly, water content (% fw) of the newly-molted fourth instar larvae declined with increasing potassium, indicating a passive loss of water during potassium excretion. Low and high dietary potassium reduced survivorship of third instar larvae; fourth instar caterpillars previously fed the low potassium diet also had poor survivorship. We conclude that, within the normal range of potassium concentrations in the hostplants, caterpillar performance is largely unaffected by potassium concentration, but that potassium-poor and potassium-rich diets, such as those hornworms may sometimes experience, can reduce growth and survivorship.  相似文献   

7.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

8.
We examined how light availability influenced the defensive chemistry of tomato (Lycopersicon esculentum: Solanaceae). Tomato plants were grown either in full sunlight or under shade cloth rated at 73%. Leaves from plants grown in full sunlight were tougher, had higher concentrations of allelochemicals (chlorogenic acid, rutin and tomatine), and had less protein than leaves from plants grown in shade. We determined how these differences in host plant quality due to light availability affected the behavior and growth of a Solanaceae specialist, Manduca sexta. Both in the greenhouse and in the field, caterpillars on shade-grown plants grew heavier in a shorter amount of time than those on plants that had previously been grown in full sunlight. In contrast, the effects of previous light availability to plants on caterpillar behavior appeared to be minor.To further investigate how light availability to plants influenced herbivore growth, we examined the effects of leaf-powder diets made from tomato leaves of different ages (new, intermediate, or mature) grown in full sunlight or shade on caterpillar performance. Caterpillars fed diets made from plants grown in shade consumed less but grew faster than larvae fed diets made from tomato plants grown in full sunlight. Caterpillars fed diets made from new leaves grew larger in less time than caterpillars fed diets made from intermediate aged leaves. Caterpillars did not survive on the mature leaf powder diets. There were plant-light treatment by larval thermal regime interactions. For example, at 26:15 °C , plant-light treatment had no effect on stadium duration, but at 21:10 °C, stadium duration was prolonged with the full sunlight-new leaf diet compared with the shaded-new leaf diet. In a second diet experiment, we examined the interactive effects of protein and some tomato allelochemicals (rutin, chlorogenic acid and tomatine) on the performance of caterpillars. There were food quality by thermal regime interactions. For instance, at 26:15 °C , neither protein nor allelochemical concentration influenced stadium duration, whereas at 21:10 °C, stadium duration was prolonged with the low protein-high allelochemical diet, which simulated full sunlight leaves. In sum, light availability to plants affected defensive chemistry and protein concentration. The difference in food quality was great enough to influence the growth of a specialist insect herbivore, but the effects were temperature-dependent.  相似文献   

9.
Summary An indirect effects is defined here as a reduction in prey survivorship as a consequence of a reduction in growth rate of prey due to the presence of a predator that alters prey behavior. A method for partitioning the direct and indirect effects of predators on prey survivorship indicated that predatory wasps (Polistes sp.:. Vespidae) had both direct and indirect negative effects on survivorship of buckmoth caterpillars (Hemileuca lucina: Saturniidae). In a field experiment, the direct and indirect effects together accounted for 61% of the mortality of the caterpillars. A third of this reduction in survivorship due to the wasps was attributed to an indirect effect, due to the decreased growth rate of the caterpillars that moved into the interior of the hostplant to escape from the wasps. In contrast, in another field experiment, although predatory stinkbugs (Podisus maculiventris: Hemiptera) contributed to 56% of the mortality of buckeye caterpillars (Junonia coenia: Nymphalidae), the indirect effect of stinkbugs on buckeye caterpillars only accounted for 2% of the reduction in survivorship of these caterpillars. These differences in the indirect effect are discussed in particular relative to the behavior of predators and prey, ratio of predator to prey sizes, and morphology of the hostplants.  相似文献   

10.
Many herbivores increase their consumption rate as dietary nutrient concentration declines. This compensatory response can mitigate the fitness-lowering impact of reduced food quality, but little is known about its costs. In this study we tested the hypothesis that one cost to a faster consumption rate can be the ingestion of a toxic dose of an allelochemical occurring in the food. We fed velvetbean caterpillars a diet with progressively diluted nutrient levels but containing the same concentration (% fresh mass, fm) of caffeine, a methylxanthine alkaloid. Larvae compensated for the reduced nutrient level, with those fed the most diluted diet increasing their biomass-relative consumption rate (fm) 2.6-fold over larvae fed the undiluted diet. Consequently, their rate of caffeine ingestion increased to a pharmacologically effective dose, interfering with food utilization, slowing growth, reducing subsequent feeding and lowering survival. These results suggest that greater allelochemical ingestion can be one cost of an increased consumption rate, although additional studies with other allelochemicals and species are necessary to more broadly evaluate whether insects can adaptively balance their intake of nutrients and allelochemicals through adjustments in consumption rate. In addition, these results highlight the importance of measuring consumption rates of allelochemicals and other ingested biocides, not just their dietary concentration, when assessing efficacy against herbivores.  相似文献   

11.
1. The effects of temperature on the Oak–Winter Moth–Tit food chain were studied at Wytham Wood, Oxford, and experimentally in the controlled environment solardomes at the Institute of Terrestrial Ecology, Bangor.
2. Tree cores from Wytham indicated that mature Oaks grew best at high temperatures and rainfall, but with low caterpillar populations. Young trees grew less well at elevated temperature, probably because they lost more water than they gained. Elevated temperatures advanced budburst, reduced foliar nitrogen and increased leaf toughness.
3. Moth eggs laid later or maintained at cooler temperatures than average required fewer heat units to hatch. Caterpillars took up to 50 days to complete growth at field temperatures but did so in only 20 days at a constant 15 °C.
4. The mass of Tit chicks at day 15 (day 1 = egg hatch) was positively correlated with temperature and negatively correlated with rainfall during the growing period.
5. At elevated temperature, budburst and moth egg hatch were synchronized, but earlier. Late feeding larvae and larvae fed on leaves from trees grown at elevated temperature produced smaller pupae. Pupal mass was unaffected when caterpillars and trees were maintained together under the same conditions.
6. Delaying egg hatch in Tits, to simulate conditions at elevated spring temperatures, resulted in reduced chick mass, body size and fledging success. This occurred because the chicks were fed later and prey quality was poorer, because the peak of caterpillar biomass was missed.
7. We predict that moth reproductive output will be retained at elevated temperatures because both leaves and caterpillars develop faster. Brood size in birds may be reduced because they cannot lay early enough to coincide with the narrower peak of food abundance.  相似文献   

12.
As primary consumers of foliage, caterpillars play essential roles in shaping the trophic structure of tropical forests. The caterpillar midgut is specialized in plant tissue processing; its pH is exceptionally alkaline and contains high concentrations of toxic compounds derived from the ingested plant material (secondary compounds or allelochemicals) and from the insect itself. The midgut, therefore, represents an extreme environment for microbial life. Isolates from different bacterial taxa have been recovered from caterpillar midguts, but little is known about the impact of these microorganisms on caterpillar biology. Our long-term goals are to identify midgut symbionts and to investigate their functions. As a first step, different diet formulations were evaluated for rearing two species of tropical saturniid caterpillars. Using the polymerase chain reaction (PCR) with primers hybridizing broadly to sequences from the bacterial domain, 16S rRNA gene libraries were constructed with midgut DNA extracted from caterpillars reared on different diets. Amplified rDNA restriction analysis indicated that bacterial sequences recovered from the midguts of caterpillars fed on foliage were more diverse than those from caterpillars fed on artificial diet. Sequences related to Methylobacterium sp., Bradyrhizobium sp., and Propionibacterium sp. were detected in all caterpillar libraries regardless of diet, but were not detected in a library constructed from the diet itself. Furthermore, libraries constructed with DNA recovered from surface-sterilized eggs indicated potential for vertical transmission of midgut symbionts. Taken together, these results suggest that microorganisms associated with the tropical caterpillar midgut may engage in symbiotic interactions with these ecologically important insects.  相似文献   

13.
The effects of prey size on the predatory responses of the reduviid Zelus longipes were studied through laboratory tests using larvae of the noctuid moth Spodoptera frugiperda as preys. In tests with one caterpillar, larvae of three different weight classes were offered individually to the predator. The prey weight was positively correlated with relative weight gain by the predator, mean feeding time and discarded biomass, but not with the relative extraction rate (defined as the relative weight gain by the predator by feeding time). The different sizes of caterpillars were attacked with the same frequency, but the successful attacks were more frequent in small larvae. The median mass of successfully attacked larvae was also less than that of unsuccessfully attacked. In tests with three caterpillars, larvae of three weight classes were offered at the same time; small caterpillars were more often attacked and killed than the medium and large ones. The results showed that even if larger preys resulted in more energy intake, when the choice is possible, smaller caterpillars were more likely to be attacked than medium and large. This is probably related to the fact that successful attacks were more frequent in small larvae, and also reduced the risk of injury to the predator.  相似文献   

14.
Temperature and food quality can both influence growth rates, consumption rates, utilization efficiencies and developmental time of herbivorous insects. Gravimetric analyses were conducted during two consecutive years to assess the effects of temperature and food quality on fourth instar larvae of the forest tent caterpillar Malacosoma disstria Hübner. Larvae were reared in the laboratory at three different temperatures (18, 24 and 30 degrees C) and on two types of diet; leaves of sugar maple trees Acer saccharum Marsh. located at the forest edge (sun-exposed leaves) or within the forest interior (shade-exposed leaves). In general, larvae reared at 18 degrees C had lower growth rates and lower consumption rates than larvae reared at the warmer temperatures (24 and 30 degrees C). Moreover, the duration of the instar decreased significantly with increasing temperatures. Type of diet also affected the growth rates and amount of food ingested by larvae but did not affect the duration of the instar. Larvae fed sun-exposed leaves consumed more food and gained higher biomasses. Values of approximate digestibility and efficiency of conversion of ingested food were also higher when larvae were fed sun-exposed leaves. Higher growth rates with increasing temperatures were primarily the result of the shorter stadium duration. The higher growth rates of larvae fed sun-exposed leaves were possibly the result of stimulatory feeding and consequently greater food intake and also a more efficient use of food ingested. This study suggests that the performance of M. disstria caterpillars could be enhanced by warmer temperatures and higher leaf quality.  相似文献   

15.
Climate‐driven shifts in prey phenology may lead to asynchrony with the timing of peak resource requirements of their predators, leading to a reduction in productivity and population declines. Migrant species that cannot adjust their arrival times may be particularly at risk, especially those that breed in seasonal environments and for which a temporarily super‐abundant prey source is important, such as insectivorous passerine birds that take advantage of the seasonal flush of caterpillars to feed their young. We assess whether population declines of the trans‐Saharan migratory Wood Warbler Phylloscopus sibilatrix are likely to have been caused by phenological mismatch. We measured seasonal invertebrate biomass and various fitness parameters, including the timing of breeding and breeding success, in two time periods: 1982–1984, prior to the species’ decline in the UK, and 2009–2011, as the reduction in numbers continued. Although birds bred on average a week earlier in 2009–2011 than in 1982–1984, this was not adequate to track the more rapid advancement of peak caterpillar biomass, which advanced by 12 days and was closely correlated with spring temperatures. Moreover, although caterpillars were the dominant prey fed to nestlings, there was only limited evidence that productivity was positively related to caterpillar biomass in the environment. Considering only successful nests, synchrony with the food peak did not produce heavier nestlings and had only a small positive effect on fledging success, although there was a seasonal decline in productivity when all nests were considered. We conclude that the lack of a marked effect of the observed mismatch is due to Wood Warblers’ generalist diet, enabling them to breed successfully on prey other than caterpillars. Although other studies have demonstrated that climate‐driven asynchrony of predator and prey populations can have impacts on avian demography, this study highlights the importance of investigating the generality of those findings.  相似文献   

16.
We determined the seasonal diet of the variable hawk, Geranoaetus polyosoma, in a hyperarid and threatened habitat in the Atacama Desert, northern Chile, by analysing the contents of the bird's pellets. We estimated the biomass and number of individuals of each prey species consumed. We compared our results with those of other studies on G. polyosoma in South America. In general, the diet was characterised by extremely low number of prey, low diversity of species consumed and high dietary breadth. In contrast with other biomes of Chile, in our study reptiles formed the dominant food item and accounted for the highest percentage of biomass consumed from autumn to spring, with rodents being a seasonally significant major food item. Arthropods were also consumed, but the biomass ingested was negligible. Statistically significant differences were noted across seasons in the prey items consumed, reflecting a flexible and opportunistic response to the scarcity of prey available. Our findings add to the data present on the basic natural history of G. polyosoma and can aid in its conservation in the Atacama Desert.  相似文献   

17.
We investigated the effects of predator diet breadth on the relative importance of bottom-up and top-down control of prey assemblages, using microbial food webs containing bacteria, bacterivorous protists and rotifers, and two different top predators. The experiment used a factorial design that independently manipulated productivity and the presence or absence of two top predators with different diet breadths. Predators included a "specialist" predatory ciliate Euplotes aediculatus, which was restricted to feeding on small prey, and a "generalist" predatory ciliate Stentor coeruleus, which could feed on the entire range of prey sizes. Both total prey biomass and prey diversity increased with productivity in the predator-free control and specialist predator treatments, a pattern consistent with bottom-up control, but both remained unchanged by productivity in the generalist predator treatment, a pattern consistent with top-down control. Linear food chain models adequately described responses in the generalist predator treatment, whereas food web models incorporating edible and inedible prey (which can coexist in the absence of predators) adequately described responses in the specialist predator treatment. These results suggest that predator diet breadth can play an important role in modulating the relative strength of bottom-up and top-down forces in ecological communities.  相似文献   

18.
19.
Transport and retention of the insect growth regulators (IGRs) diflubenzuron and pyriproxyfen in larvae of the beet armywormSpodoptera exigua (Hübner) and in nymphs of the predatory bugPodisus maculiventris (Say) were investigated. In a first experiment, the retention of orally administered [14C]radiolabeled isotopes of both compounds in fifth-instar larvae of the beet armyworm was studied. Rate of excretion of both IGRs inS. exigua caterpillars was high, with a 50% excretion time of approximately 6 h after intake. In a second experiment, the transport of the compounds from prey to predator and their retention inside the predator were studied. Fifthinstar nymphs ofP. maculiventris were allowed to feed on caterpillars that had been given contaminated food. For both diflubenzuron and pyriproxyfen, more than 80% of the amount of radiolabel applied was recovered in consumed prey. Low levels of radioactivity (c. 3% of the applied amount of radiolabel) were also found in the fluid regurgitated by the prey larvae when attacked by the predatory bugs. Relatively small amounts of radiolabel (c. 8 and 15% of the amount orally applied to the prey for diflubenzuron and pyriproxyfen, respectively) were ingested byP. maculiventris nymphs when feeding on beet armyworm caterpillars. The data suggest that the predators did not use gut content as food. The pattern of excretion in nymphs ofP. maculiventris differed between compounds. For diflubenzuron, there was a drastic decrease of radioactivity inside the predator body of around 40% within the first 6 h and then the level of retained radiolabel remained stable at 3–4% up to 72 h. For pyriproxyfen, a slow decrease of radioactivity inside the body was observed and at 72 h only 2% of the applied quantity was detected. Results of this study are discussed in relation to the findings from previous studies on the toxicity of both IGRs toP. maculiventris.  相似文献   

20.
Four mechanisms by which peritrophic membranes (PMs) potentially protect herbivorous insects from ingested allelochemicals are reviewed: adsorption, ultrafiltration, polyanion exclusion, and the capacity of PMs to act as antioxidants. Most of the research on the protective roles of PMs against ingested allelochemicals has focused on their impermeability to tannins. Adsorption of tannins by the PMs in grasshoppers may limit their permeability, but ultrafiltration of tannin complexes in the caeca is an alternative explanation. Polyanion exclusion does not explain the impermeability of caterpillar PMs to tannins (polyphenolate anions). Ultrafiltration remains the most likely mechanism by which tannins, and other tested allelochemicals, are retained in the endoperitrophic space. Although the pores in PMs are too large to impede the passage of most free allelochemicals, large allelochemical complexes are retained. Such complexes form in the gut fluid of caterpillars between tannic acid, proteins, lipids, and polyvalent metal cations, and also in the gut fluid of grasshoppers (Melanoplus sanguinipes) between some amphiphilic allelochemicals (digitoxin) and surfactant micelles. Further work is needed to examine the role of PMs as antioxidants in vivo, such as their potential to bind catalytically-active metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号