首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A brick-red-pigmented strain (XTM003T) isolated from the Qinghai–Tibet plateau was investigated using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequence indicated that the organism belonged to the genus Hymenobacter. The predominant menaquinone was MK7. The major fatty acids included iso-15:0, 16:1w5c and summed feature 3 (C16: 1ω7c and/or C16: 1ω6c). The G+C content of the DNA was 55.8%. In addition, DNA–DNA hybridization studies demonstrated that strain XTM003T had a relatedness value of 50.7% with the phylogenetically most closely related species Hymenobacter norwichensis DSM 15439T. Based on the results of phenotypic characteristics and DNA–DNA hybridization studies, strain XTM003T is considered to represent a novel species, for which the name Hymenobacter tibetensis sp. nov. is proposed. The type strain is XTM003T (=CCTCC AB 207089T=NRRL B-51271T).  相似文献   

2.
3.
4.
Several samples of microbial mat obtained from soda lakes of the Kunkurskaya steppe (Chita region) abundantly populated by purple bacteria were screened for the presence of heterotrophic alkaliphiles capable of oxidizing sulfur compounds to sulfate. This capacity was found in only one pigmented strain, ALG 1, isolated on medium with acetate and thiosulfate at pH 10. The strain was found to be a strictly aerobic and obligately heterotrophic alkaliphile. Growth on medium with acetate was possible within a narrow pH range from 8.5 to 10.4. The strain formed a reddish orange carotenoid and bacteriochlorophylla. Pigments were synthesized only at high concentrations of nitrogen-containing organic compounds (peptone or yeast extract). The production of bacteriochlorophylla was maximal under microaerobic conditions in darkness. Strain ALG 1 could oxidize sulfide, thiosulfate, sulfite, and elemental sulfur to sulfate. In heterotrophically growing culture (pH 10), thiosulfate was not oxidized until the late logarithmic phase. The sulfur-oxidizing activity was maximal at the most alkaline pH values. The notable increase in the efficiency of organic carbon utilization observed in the presence of thiosulfate suggested that the bacterium was a sulfur-oxidizing lithoheterotroph. The phylogenetic analysis of the 16S rRNA gene showed strain ALG 1 to be a member of the α-3 subgroup of Proteobacteria and to constitute a distinct branch located between nonsulfur purple bacteriaRhodobacter andRhodovulum. Based on the unique phenotypic properties and the results of phylogenetic analysis, the alkaliphilic isolate ALG 1 was assigned to a new genus and speciesRoseinatronobacter thiooxidans with the type strain DSM-13087  相似文献   

5.
A novel alkalophilic salt-tolerant rod-shaped bacterium, designated ANESC-ST, was isolated from an extremely alkali–saline soil in the rural area of Anda city in northeast China. Taxonomic study using a polyphasic approach revealed that this non-motile, orange colony-forming microbe was Gram-negative and obligately aerobic. Optimal growth of strain ANESC-ST was achieved in the presence of NaCl with a concentration range of 0.5 to 4 % and pH between 7.5 and 9.2, and at temperatures ranging from 10 to 37 °C. Phylogenetic analysis of 16S rRNA sequences showed that of strain ANESC-ST is most homologous to Mongoliicoccus roseus MIM28T and Litoribacter ruber YIM CH208T with sequence similarity of 95.1 and 93.2 %, respectively. The genomic DNA G+C content of strain ANESC-ST was determined to be 39.1 mol%. The main isoprenoid quinone in ANESC-ST was found to be menaquinone-7. The main fatty acids were found to be iso-C15:0 (27.5 %), iso-C17:03-OH (14.0 %), anteiso-C15:0 (9.8 %), summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0 10.6 %) and summed feature 3 (C16:1w7c/C16:1w6c, 9.78 %). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain ANESC-ST is considered to represent a new genus and species classified into the order Cytophagales, for which the name Anditalea andensis gen. nov., sp. nov. is proposed. The type strain is ANESC-ST (=CICC 10485T = NCCB 100412T).  相似文献   

6.
Strain AK12T, an orange pigmented Gram-negative, rod shaped, non-motile bacterium, was isolated from a mud sample collected from a brackish water pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase. The predominant fatty acids were iso-C15:0 (42.7%), iso-C17:0 3OH (13.2%), C16:1ω7c/C16:1ω6c (summed feature 3) (8.0%), iso-C17:1 I/anteiso-C17:1 B (summed feature 4) (6.1%) and iso-C17:1ω9c/C16:0 10-methyl (summed feature 9) (9.4%). Strain AK12T contained MK-7 as the major respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid and six unidentified lipids as the polar lipids. The G + C content of DNA of the strain AK12T was 46.2 mol%. The 16S rRNA gene sequence analysis indicated that strain AK12T was member of the genus Echinicola and closely related to Echinicola vietnamensis, Echinicola pacifica and Echinicola jeungdonensis with pair-wise sequence similarity of 96.8, 96.3 and 96.0% respectively. Phylogenetic analyses indicated that the strain AK12T clustered with E. vietnamensis and together with E. pacifica and E. jeungdonensis with a phylogenetic distance of 5.1, 6.3 and 6.6% (94.9, 93.7 and 93.4% similarity) respectively. Based on data from the current polyphasic study, strain AK12T is proposed as a novel species of the genus Echinicola, for which the name Echinicola shivajiensis sp. nov. is proposed. The type strain of E. shivajiensis is AK12T (= MTCC 11083T = JCM 17847T).  相似文献   

7.
A slightly halophilic bacterium (strain NEAU-ST10-25T) was isolated from saline–alkaline soils in Zhaodong City, Heilongjiang Province, China. The strain is a Gram-negative, aerobic motile rod. It accumulates poly-β-hydroxyalkanoate and produces exopolysaccharide. It produces beige-yellow colonies. Growth occurs at NaCl concentrations (w/v) of 0–15 % (optimum 3 %), at temperatures of 4–60 °C (optimum 35 °C) and at pH 6–12 (optimum pH 9). Its G+C content is 53.8 mol%. Phylogenetic analyses based on the separate 16S rRNA gene and concatenation of the 16S rRNA, gyrB and rpoD genes indicate that it belongs to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species is Halomonas alkaliphila DSM 16354T, with which strain NEAU-ST10-25T showed 16S rRNA, gyrB and rpoD gene sequence similarities of 99.2, 82.3 and 88.2 %, respectively. The results of DNA–DNA hybridization assays showed 60.47 ± 0.69 % DNA relatedness between strain NEAU-ST10-25T and H. alkaliphila DSM 16354T, 42.43 ± 0.37 % between strain NEAU-ST10-25T and Halomonas venusta DSM 4743T and 30.62 ± 0.43 % between strain NEAU-ST10-25T and Halomonas hydrothermalis DSM 15725T. The major fatty acids are C18:1 ω7c (62.3 %), C16:0 (17.6 %), C16:1 ω7c/C16:1 ω6c (7.7 %), C14:0 (2.9 %), C12:0 3-OH (2.8 %), C10:0 (2.1 %) and C18:1 ω9c (1.6 %) and the predominant respiratory quinone is ubiquinone 9 (Q-9). The proposed name is Halomonas zhaodongensis, NEAU-ST10-25T (=CGMCC 1.12286T = DSM 25869T) being the type strain.  相似文献   

8.
A taxonomic study was conducted on 16 bacterial strains isolated from wild Adélie penguins (Pygoscelis adeliae) from Seymour (Marambio) Island and James Ross Island. An initial screening by repetitive sequence-based PCR fingerprinting divided the strains studied into four coherent groups. Phylogenetic analysis based on 16S rRNA gene sequences assigned all groups to the genus Corynebacterium and showed that Corynebacterium glyciniphilum and Corynebacterium terpenotabidum were the closest species with 16S rRNA gene sequence similarities between 95.4 % and 96.5 %. Further examination of the strains studied with ribotyping, MALDI-TOF mass spectrometry, comprehensive biotyping and calculation of average nucleotide identity and digital DNA–DNA hybridisation values confirmed the separation of the four groups from each other and from the other Corynebacterium species. Chemotaxonomically, the four strains P5828T, P5850T, P6136T, P7210T representing the studied groups were characterised by C16:0 and C18:1 ω9c as the major fatty acids, by the presence of meso-diaminopimelic acid in the peptidoglycan, the presence of corynemycolic acids and a quinone system with the predominant menaquinone MK-9(H2). The results of this study show that the strains studied represent four new species of the genus Corynebacterium, for which the names Corynebacterium antarcticum sp. nov. (type strain P5850T = CCM 8835T = LMG 30620T), Corynebacterium marambiense sp. nov. (type strain P5828T = CCM 8864T = LMG 31626T), Corynebacterium meridianum sp. nov. (type strain P6136T = CCM 8863T = LMG 31628T) and Corynebacterium pygosceleis sp. nov. (type strain P7210T = CCM 8836T = LMG 30621T) are proposed.  相似文献   

9.
A symbiotic green sulfur bacterium, strain CaD, was isolated from an enrichment culture of the phototrophic consortium “Chlorochromatium aggregatum”. The capability of the epibiont to grow in pure culture indicates that it is not obligately symbiotic. Cells are Gram-negative, nonmotile, rod-shaped and contain chlorosomes. Strain CaD is obligately anaerobic and photolithoautotrophic, using sulfide as electron donor. Acetate and peptone are photoassimilated in the presence of sulfide and hydrogencarbonate. Photosynthetic pigments contain bacteriochlorophylls a and c, and γ-carotene and OH-γ-carotene glucoside laurate as the dominant carotenoids. In cells from pure cultures, chlorosomes are equally distributed along the inner face of the cytoplasmic membrane. In contrast, the distribution of the chlorosomes in symbiotic epibiont cells is uneven, with chlorosomes being entirely absent at the site of attachment to the central bacterium. The symbiotic epibiont cells display a conspicuous additional layered structure at the attachment site. The G + C content of genomic DNA of strain CaD is 46.7 mol%. On the basis of 16S rRNA sequence comparison, the strain is distantly related to Chlorobium species within the green sulfur bacteria phylum (≤94.6% sequence homology). The novel isolate is therefore described as a novel species within the genus Chlorobium, Chlorobium chlorochromatii.  相似文献   

10.
A novel Gram-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Qurugöl Lake near Tabriz city. The bacterium grew chemoorganolheterotrophically and chemolithoautotrophically. However, photo-organoheterotrophic, photo-lithoautotrophic and fermentative growth could not be demonstrated. The presence of photosynthesis genes pufL and pufM was not shown and photosynthesis pigments were not formed. Strain RCRI19T grew without NaCl and tolerated up to 3 % NaCl. Growth occurred at pH 6–9 (optimum, pH 7) and 15–55 °C (optimum 40–45 °C). Vitamins were not required for growth. The major fatty acids are C18:1 ω7C, 11-methyl C18:1 ω7C, C18:0 3-OH. The predominant respiratory quinone is ubiquinone Q-10. The G+C content of genomic DNA is 65.9 mol%. Analysis of 16S rRNA sequences showed that strain RCRI19T has the highest similarities with uncultured environmental sequences followed by members of the genera Rhodobacter (≤95.75 %), Haematobacter (≤95.53 %), Gemmobacter (≤95.17 %) and Falsirhodobacter (94.60 %) in the family Rhodobacteraceae. DNA–DNA relatedness between strain RCRI19T and the closest phylogenetically related strain, Rhodobacter blasticus LMG 4305T, was 20 %. Based on its phenotypic and chemotaxonomic characteristics and considering that it does not form photosynthetic pigments and is unable to grow phototrophically, it is concluded that strain RCRI19T cannot be included into the genus Rhodobacter and any of the other related genera. Therefore, we propose to place the new bacterium into a new genus and species for which the name Tabrizicola aquatica gen. nov. and sp. nov. is proposed. The type strain is RCRI19T (=BCCM/LMG 25773= JCM 17277= KCTC 23724T).  相似文献   

11.
Two novel Gram-positive, spore-forming, thermophilic actinomycetes, designated as strain YIM 77501T and YIM 77570, were isolated from a sandy soil sample collected at Tengchong National Volcanic Geological Park, Yunnan province, south–west China. Phylogenetic analysis based on the 16S rRNA gene sequences suggested that the two isolates fell within the family Streptosporangiaceae. The strains formed extensively branched substrate and aerial mycelia which carried masses of long, straight or irregular spore chains composed of warty ornamented spores. Cell walls of the two strains contained meso-diaminopimelic acid and glucose, galactose, mannose and ribose were detected as whole-cell sugars. The predominant menaquinones were MK-9(H4) and MK-9(H6). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, N-acetylglucosamine-containing phospholipids and phosphatidylinositol, phosphatidylinositolmannosides. The major cellular fatty acids were iso-C16:0 and 10-methyl C17:0. The DNA G+C content was 74–76 mol%. On the basis of the morphological and chemotaxonomic characteristics as well as the phylogenetic analysis, these strains represents a novel species of a new genus within the family Streptosporangiaceae, for which the name Thermoactinospora rubra gen. nov., sp. nov. is proposed. The type strain of T. rubra is YIM 77501T (=DSM 45614T = CCTCC AA 2011014T).  相似文献   

12.
Sui  Xin  He  Xiao-yan  Liu  Ning-hua  Dang  Yan-ru  Cha  Qian-qian  Sun  Mei-ling  Li  Chun-yang  Fu  Hui-hui  Song  Xiao-yan  Qin  Qi-long  Chen  Xiu-lan  Zhang  Yu-zhong  Su  Hai-nan  Zhang  Xi-ying 《Antonie van Leeuwenhoek》2021,114(7):947-955
Antonie van Leeuwenhoek - A novel Gram-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative bacterium, designated strain SM1970T, was isolated from a seawater sample collected from...  相似文献   

13.
Novel alkaliphilic, mesophilic bacteria were isolated from subseafloor alkaline serpentine mud from the Ocean Drilling Program (ODP) Hole 1200D at a serpentine mud volcano, South Chamorro Seamount in the Mariana Forearc. The cells of type strain ODP1200D-1.5T were motile rods with a single polar flagellum. Growth was observed between 10 and 45–50°C (optimum temperature: 30–35°C, 45-min doubling time), between pH 6.5 and 10.8–11.4 (optimum: pH 8.5–9.0), and between NaCl concentrations of 0 and 21% (w/v) (optimum NaCl concentration: 2.5–3.5%). The isolate was a facultatively anaerobic heterotroph utilizing various complex substrates, hydrocarbons, carbohydrates, organic acids, and amino acids. Nitrate or fumarate could serve as an electron acceptor to support growth under anaerobic conditions. The G+C content of the genomic DNA was 57.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Marinobacter and was the most closely related to M. aquaeolei strain VT8T and M. hydrocarbonoclasticus strain SP.17T, while DNA–DNA hybridization demonstrated that the new isolate could be genetically differentiated from the previously described species of Marinobacter. Based on the physiological and molecular properties of the new isolate, we propose the name Marinobacter alkaliphilus sp. nov., type strain: ODP1200D-1.5T (JCM12291T and ATCC BAA-889T).  相似文献   

14.
Four strains of lactic acid bacteria isolated from cachaça and alcohol fermentation vats in Brazil were characterised in order to determine their taxonomic position. Phylogenetic analysis revealed that they belong to the genus Oenococcus and should be distinguished from their closest neighbours. The 16S rRNA gene sequence similarity against the type strains of the other two species of the genus was below 94.76 % (Oenococcus kitaharae) and 94.62 % (Oenococcus oeni). The phylogeny based on pheS gene sequences also confirmed the position of the new taxon. DNA–DNA hybridizations based on in silico genome-to-genome comparison, Average Amino Acid Identity, Average Nucleotide Identity and Karlin genomic signature confirmed the novelty of the taxon. Distinctive phenotypic characteristics are the ability to metabolise sucrose but not trehalose. The name Oenococcus alcoholitolerans sp. nov. is proposed for this taxon, with the type strain UFRJ-M7.2.18T ( = CBAS474T = LMG27599T). In addition, we have determined a draft genome sequence of the type strain.  相似文献   

15.
16.
An α-glucosidase producing, thermophilic, facultatively anaerobic, and endospore-forming, motile, rod-shaped bacterial strain F84b(T) was isolated from a high temperature well-pipeline sediment sample in Kizilcahamam, Turkey. The growth occurred at temperatures, pH and salinities ranging from 45 to 69oC (optimum 60oC), 7.0 to 8.5 (optimum 8.0) and 0 to 5% (w/v) (optimum 3.5%), respectively. Strain F84b(T) was able to grow on a wide range of carbon sources. Starch and tyrosine utilization, amylase, catalase and oxidase activities, nitrate reduction, and gas production from nitrate were all positive. The G+C content of the genomic DNA was 49.6 mol%. The menaquinone content was MK-7. The dominant cellular fatty acids were iso-C17:0, iso-C15:0, and C16:0. In phylogenetic analysis of 16S rRNA gene sequence, strain F84b(T) showed high sequence similarity to Geobacillus thermodenitrificans (99.8%) and to Geobacillus subterraneus (99.3%) with DNA hybridization values of 74.3% and 29.1%, respectively. In addition, the Rep-PCR and the intergenic 16S-23S rRNA gene fingerprinting profiles differentiated strain F84b(T) from the Geobacillus species studied. The results obtained from the physiological and biochemical characters, the menaquinone contents, the borderline DNA-DNA hybridization homology, and the genomic fingerprinting patterns had allowed phenotypic, chemotaxonomic and genotypic differentiation of strain F84b(T) from G. thermodenitrificans. Therefore, strain F84b(T) is assigned to be a new subspecies of G. thermodenitrificans, for which the name Geobacillus thermodenitrificans subsp. calidus, subsp. nov. is proposed (The type strain F84b(T) = DSM 22629(T) = NCIMB 14582(T)).  相似文献   

17.
 A novel thermophilic Gram-positive bacillus, “Bacillus thermoantarcticus”, isolated from geothermal soil near the crater of Mount Melbourne, is described. The organism grows at an optimal temperature of 63°C at pH 6.0, is oxidase-positive, catalase-negative and produces an exopolysaccharide, an exocellular xylanase, an intracellular alcohol dehydrogenase and exo- and endocellular α-glucosidase(s). The sequence of 16S rDNA is very similar to that of “Bacillus thermoglucosidasius”; however, the guanine-plus-cytosine (G+C) content is 8 mol% higher. The type strain is “Bacillus thermoantarcticus” (DSM 9572). Received : 3 February 1995/Accepted : 12 May 1995  相似文献   

18.
Strains of the phototrophic bacteria previously referred to as the rhodocyclus gelatinosus-like (RGL) group were taxonomically studied in comparison with Rhodocyclus species. Cells of the RGL strains were curved rods and motile by means of polar flagella. They contained bacteriochlorophyll a and carotenoids of the spheroidene series. The intracytoplasmic membrane system was absent. Photoorganotropho with various organic compounds as carbon sources was the preferred mode of growth. Aerobic growth at full atmospheric oxygen tension and fermentative growth under anaerobic-dark conditions were also possible. The major cellular fatty acids were palmitoleic acid and palmitic acid, and 3-hydroxylated fatty acids with octanoic acid predominating were also found. Both ubiquinone-8 and rhodoquinone-8 occurred as major quinones. The mol% guanine plus cytosine of the DNAs varied between 59.8 and 60.3. DNA-DNA hybridization studies showed that the RGL strains were highly related to each other but exhibited low levels of the homology to Rhodocyclus species. These data allow the establishment of the RGL group as a new taxon of the purple nonsulfur bacteria, for which the name Rhodoferax fermentans gen. nov., sp. nov. is proposed.  相似文献   

19.
Worldwide glaciers are annually retreating due to global overheating and this phenomenon determines the potential lost of microbial diversity represented by psychrophilic microbial population sharing these peculiar habitats. In this context, yeast strains, all unable to grow above 20°C, consisting of 42 strains from Antarctic soil and 14 strains isolated from Alpine Glacier, were isolated and grouped together based on similar morphological and physiological characteristics. Sequences of the D1/D2 and ITS regions of the ribosomal DNA confirmed the previous analyses and demonstrated that the strains belong to unknown species. Three new species are proposed: Mrakia robertii sp. nov. (type strain CBS 8912), Mrakia blollopis sp. nov. (type strain CBS 8921) and a related anamorphic species Mrakiella niccombsii sp. nov. (type strain CBS 8917). Phylogenetic analysis of the ITS region revealed that the new proposed species were closely related to each other within the Mrakia clade in the order Cystofilobasidiales, class Tremellomycetes. The Mrakia clade now contains 8 sub-clades. Teliospores were observed in all strains except CBS 8918 and for the Mrakiella niccombsii strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号