首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Acta Oecologica》2007,31(2):185-192
We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.  相似文献   

3.

Host-parasite metacommunities are influenced by a myriad of factors, although little is known about which processes affect this relationship at different scales. Here, we tested how local habitat characteristics and host traits explained the parasite metacommunity of a migratory fish in a large Brazilian river floodplain. The parasite metacommunity structure showed a Clementsian pattern, which indicates a more deterministic assembly pattern, in accordance with partial Redundancy Analysis results. Results indicated that species filtering is the predominant mechanism driving community assembly. Patterns were clearer in the dry season of the floodplain. Environmental determinism seems to explain ectoparasite metacommunities in the dry season, in contrast with endoparasites that were more correlated to host traits. Overall, our results indicated that ectoparasitism is an interaction marked by opportunity, whereas endoparasitism is likely related to host features. Thus, we argue that metacommunity structuring of parasites depends on the infection strategy. Our results show that floodplain dynamics are central not only for free-living animal organizations but also for symbiotic interactions. Here, we highlight the importance of understanding the factors influencing the distribution of parasites to predict their transmission, as well as the importance of floodplain dynamics and its hydrological regime on the maintenance of ecological interactions.

  相似文献   

4.
Phytoseiid mites were sampled in a grapefruit orchard at various times of the day to study their diurnal and seasonal distributions in the tree canopy. Samples were collected on 14, 20 and 28 October 1999 at 2 h intervals from 0600 to 2200 h. Similar samples were collected in a grapefruit orchard at 3 h intervals from 0600 to 2100 h on 9 and 16 March and on 17 and 24 August 2000 for phytoseiid mites. No differences in numbers of phytoseiid motiles were observed among the hours sampled in any of the three months. However, significant differences were observed in the number of phytoseiids per leaf based on location within the tree (eastern, western sides of the canopy or interior). Interior leaves collected in March and August 2000 had higher numbers of phytoseiids than exterior leaves taken from either the eastern or western sides of the tree canopy. Phytoseiids were more abundant in the March 2000 samples (mean = 1.10 phytoseiids/leaf) than in either October 1999 or August 2000 samples (mean = 0.16 and 0.19 phytoseiids/leaf, respectively). Prevalent phytoseiid species were Typhlodromalus peregrinus (Muma) (42.1%) and Iphiseiodes quadripilis (Banks) (50.4%) in October 1999, Typhlodromalus peregrinus (Muma) (76.2%) in March 2000, and Euseius mesembrinus (Dean) (54%) in August 2000.  相似文献   

5.
Baruzzi  C.  Medina-Irizarry  N.  Armstrong  M. N.  Crandall  R. M. 《Plant Ecology》2022,223(3):263-272
Plant Ecology - Environmental heterogeneity can interact with ecosystem processes to alter individual plant reproduction. A better understanding of the factors that contribute to variation in plant...  相似文献   

6.
Dispersal is a key process in metacommunity dynamics, allowing the maintenance of diversity in complex community networks. Geographic distance is usually used as a surrogate for connectivity implying that communities that are closely located are considered more prone to exchange individuals than distant communities. However, in some natural systems, organisms may be subjected to directional dispersal (air or water flows, particular landscape configuration), possibly leading close communities to be isolated from each other and distant communities to be connected. Using geographic distance as a proxy for realised connectivity may then yield misleading results regarding the role of dispersal in structuring communities in such systems. Here, we quantified the relative importance of flow connectivity, geographic distance, and environmental gradients to explain polychaete metacommunity structure along the coasts of the Gulf of Lions (northwest Mediterranean Sea). Flow connectivity was estimated by Lagrangian particle dispersal simulations. Our results revealed that this metacommunity is strongly structured by the environment at large spatial scales, and that both flow connectivity and geographic distance play an important role within homogeneous environments at smaller spatial scales. We thus strongly advocate for a wider use of connectivity measures, in addition to geographic distance, to study spatial patterns of biological diversity (e.g. distance decay) and to infer the processes behind these patterns at different spatial scales. Synthesis Everything is connected, but connections are seldom accurately quantified. Biological communities are often studied separately, using observations, experiments and models to unravel local dynamics of organisms interacting with each other. However, regional processes such as dispersal through ocean and air circulation, likely to connect distant communities and influence their local dynamics, are not always accounted for, or, at best, used as an homogeneous and distance‐related factor. Ocean models have being extensively developed and validated during the past decades with the increasing availability of accurate meteorological data. Using such model outputs, precise quantifi cation of exchange rates of organisms between communities was performed in a marine Mediterranean coastal area. Jointly with local environmental and biological data, these results were used to quantify the effects of realistic connectivity on local and regional polychaete community structure, and revealed that the environmental gradient, geographic distance, and connectivity were responsible for community structure at different spatial scales.  相似文献   

7.
Jones FA  Hubbell SP 《Molecular ecology》2006,15(11):3205-3217
We used genotypes from six microsatellite loci and demographic data from a large mapped forest plot to study changes in spatial genetic structure across demographic stages, from seed rain to seedlings, juveniles, and adult diameter classes in the Neotropical tree, Jacaranda copaia. In pairwise comparisons of genetic differentiation among demographic classes, only seedlings were significantly differentiated from the other diameter classes; F(ST) values ranged from 0.006 to 0.009. Furthermore, only seedlings showed homozygote excess suggesting biparental inbreeding in the large diameter reproductive adults. We found very low levels of relatedness in the first distance class of trees, 1-26 cm diameter (F(ij) = 0.011). However, there was a 5- to 10-fold rise in relatedness in the smallest distance class, from the smallest to the largest tree diameter classes (F(ij) = 0.110 for individuals > 56 cm diameter). A variety of non-mutually exclusive mechanisms have been invoked perviously to explain such a pattern, including natural selection, history, or nonequilibrium population dynamics. The long-term demographic data available for this species allow us to evaluate these mechanisms. Jacaranda is a fast-growing, light-demanding species with low recruitment rates and high mortality rates in the smaller diameter classes. It successfully regenerates only in large light gaps, which occur infrequently and stochastically in space and time. These factors contribute to the nonequilibrium population dynamics and observed low genetic structure in the small size classes. We conclude that the pattern of spatial genetic transitions in Jacaranda is consistent with overlapping related generations and strong but infrequent periods of high recruitment, followed by long periods of population decline.  相似文献   

8.
Structure and dynamics of an amphibian metacommunity in two regions   总被引:1,自引:0,他引:1  
1. The concept of metacommunity is based on the hypothesis that species occurrence depends on species dynamics and interactions on local and regional scales via the movements of individuals between localities. Metacommunity approaches are currently being applied to pond breeding taxa such as amphibians. 2. Given that animal movement is also influenced by the physical quality of the matrix to be crossed to reach a breeding habitat and by the affinity of the species for specific terrestrial habitats, matrix characteristics may enhance or hinder dispersal success. These characteristics would, in turn, affect the composition of larval assemblages at local level and, consequently, determine metacommunity structure and dynamics. 3. Here we compared the structures and dynamics of two metacommunities with the same pool of anurans along similar freshwater gradients in two regions that are well differentiated in terms of their respective terrestrial matrix. 4. Abundance of tadpole species and species assemblage in the two regions were determined principally by local processes (at pond level); however, the structure and dynamics of the communities differed. In one region species abundance was explained in part by landscape factors and consequently showed lower co-occurrence and lower colonization rates (species sorting models) indicating that terrestrial habitat could restrict animal movements, whereas in the other region higher co-occurrence and higher colonization rates (mass effect models) indicated low dispersal limitations.  相似文献   

9.
We examined the relative contributions of regional spatial characteristics and local environmental conditions in determining Paraguayan bat species composition. We used a suite of full and partial redundancy analyses to estimate four additive partitions of variance in bat species composition: (a) unexplained variation, (b) that explained purely by spatial characteristics, (c) that explained purely by local environmental conditions and (d) that explained jointly by space and environment. The spatial component to bat species composition was greater than the environmental component and both pure spatial and pure environmental characteristics accounted for significant amounts of variation in bat species composition. Results from variance decomposition suggest that the mass effects model describes metacommunity structure of Paraguayan bats better than species sorting or neutral models. Such mass effects may potentially be general for bats and could explain the inability of purely local factors to fully account for bat community organization. Mass effects also have substantial conservation implications because rescue effects may enhance the persistence of mobile species in fragmented landscapes with relatively few protected sites.  相似文献   

10.
We compare results of parallel ground and canopy netting of bats (Microchiroptera) in three adjacent forest sites near Belém, Brazil, to document possible differences in vertical distribution of species. We caught 1871 individuals representing 49 species of three families (Emballonuridae, Phyllostomidae, Vespertilionidae). Capture effort, totaling 1955.5 mistnet hours in several cycles over a two-year period, was similar for ground and canopy nets. The canopy rigs yielded more species (n = 41) than the ground nets (n = 35), but both samples were characterized by rank abundance curves with similar shape and with a dominance of frugivores (Phyllostomidae). Nearly half (n = 24) of the species were captured in numbers too small (n < 6) to allow firm classification, but differences in capture frequencies of some of the better-sampled species in high and low nets reveal vertical stratification. Species-specific differences in diet, foraging strategies, roost sites, and sampling bias contribute to this pattern. As a result of the differential use of space among bats, alterations of forest structure are likely to result in changes in structure and function of local bat communities, but our limited knowledge of natural history and ecology of many species limits definition of changes. We see a critical need for further research into the extent to which habitat complexity influences species richness and abundance of bats. This information is especially important in view of the need to develop and apply conservation-oriented programs to maintain biodiversity. A review of recent improvements in techniques for inventorying bats shows that a combination of methods, including mistnetting and acoustic monitoring, is mandatory for such studies.  相似文献   

11.
Rainfall is often indirectly related to the availability of resources, which in turn regulates the abundance of rodents over time. However, the direct influence of rainfall on daily activity is poorly understood, despite the fact that it likely has a great effect on small animals. Furthermore, the influence of the moon on the movement of rodents has been the subject of debate but limited to studies conducted in open areas. Based on a study using pitfall traps in a subtropical region of southern Brazil, this study aimed to investigate the effects of rainfall and the phases of the moon on the daily movements of five species of sigmodontine rodents in a Neotropical forest. Activity patterns were assessed over 130 days, and the daily rainfall and moon phase were verified. Rainfall exhibited a significant positive effect on all studied species. This reflects an increase in the movement of rodents on rainy days, which should be primarily associated with the immediate harmful effects of rain, such as a wet coat and the destruction of shelters. The five species responded differently to moon phase, with a lack of effect for three of them and a positive effect of a full moon on the activity patterns of the other two species. This increase in activity rhythm due to a full moon may indicate a benefit of clear nights for foraging, in contrast to the most common outcome, which associates the brightness of the moon with increased predation risk.  相似文献   

12.
City ponds have the potential to harbour a rich biodiversity of aquatic insects despite being located in an urban landscape. However, our current knowledge on the correlates of pond biodiversity is limited and even less is known about the factors that influence the ecological uniqueness of urban ponds. The multiple environmental gradients, at different spatial scales, that may affect biodiversity and ecological uniqueness of urban ponds can thus be seen both as an opportunity and as a challenge for a study. In this study, we aimed to fill this gap by focusing on aquatic insect assemblages in 51 ponds in the Swedish city of Stockholm, using a metacommunity perspective. We found that species richness was primarily determined by the density of aquatic insects, water depth and proportion of buildings around the pond. The uniqueness of ponds was estimated as local contributions to beta diversity (LCBD), and it was primarily related to the proportion of arable land and industry around the ponds. With regard to the metacommunity we found two interesting patterns. First, there was a negative relationship between richness and LCBD. Second, biodiversity was spatially independent, suggesting that spatially-patterned dispersal did not structure species richness or LCBD. These last two patterns are important when considering conservation efforts of biodiversity in city ponds. We hence suggest that the conservation of insect biodiversity in urban pond should consider the surroundings of the ponds, and that high-richness ponds are not necessarily those that require most attention because they are not ecologically the most unique.  相似文献   

13.
Ecologists have long realized that stable species richness values can mask rapid turnover in species composition. Because turnover occurs as a consequence of both local and regional processes, understanding the responsible factors provides insight on processes influencing community structure at different scales. Despite the insights to be gained from data on species turnover, they remain relatively uncommon. We present data on the interannual turnover in species composition of larval amphibian communities in 37 ponds over seven years. Species composition of a given pond community was highly dynamic; about half of the species that could be found breeding in a particular pond were actually present in a given year. All species participated in this community turnover, but to different degrees. Using a model selection approach, we show that a statistical model including local environmental factors (pond area, hydroperiod, and canopy cover) and pond connectivity on the landscape provided the best predictions of turnover. Averaged parameter estimates were significant for area, hydroperiod, and connectivity and these same variables were identified by hierarchical partitioning as having significant independent effects on turnover. Area and hydroperiod were negatively related to turnover, whereas connectivity was positively related to turnover. Additionally, the average fraction of years a species was present in a pond was positively correlated with average local population size, but even more strongly correlated with regional population size, suggesting both local and regional influences on turnover. Of the measured biotic factors (biomass of fish, invertebrate predators, anuran and caudate larvae), presence of fish was the only factor that significantly affected rates of turnover. Several mechanism could be responsible for changes in species composition (species extinctions, skipped breeding and movement of choruses), but extinctions appear to be the major cause of turnover. These results have important implications to understanding long‐term persistence of species on landscapes and the causes of patterns in species richness on environmental gradients.  相似文献   

14.
? The ectomycorrhizal (ECM) symbiosis was historically considered restricted to the temperate zones, but recent studies have shown the importance of this symbiosis across the tropics. We examined ECM fungal diversity, host plant phylogeny and ECM host preferences in a rainforest dominated by the leguminous host plants Dicymbe corymbosa, Dicymbe altsonii and Aldina insignis. ? Ectomycorrhizal fungi were identified by internal transcribed spacer rDNA sequencing and host species were verified with chloroplast trnL sequencing. To test whether Dicymbe and Aldina represent independent gains of the ECM symbiosis, we constructed a Fabaceae phylogeny using MatK and trnL. We identified four independent ECM lineages within the Fabaceae. ? We detected a diverse community of 118 ECM species dominated by the /clavulina, /russula-lactarius, /boletus, and /tomentella-thelephora lineages. Ectomycorrhizal species in Agaricales, Atheliales and Polyporales may represent previously unrecognized tropical-endemic ECM lineages. Previous studies suggested that ECM fungi did not diversify in the tropics, but the /clavulina lineage appears to have a center of diversity in tropical South America. ? Dicymbe and Aldina represent independent gains of the ECM symbiosis in Fabaceae but their fungal symbionts showed no host preferences. Spatial factors are more important than hosts in structuring the ECM fungal community in this ecosystem.  相似文献   

15.
Synopsis The fish community of a small (2.7 ha) Ontario beaver pond was analyzed relative to predictions based on its small size, shallow depth, brief existence and isolation from more permanent water bodies. The predictions were: (1) species richness will be lower than that of more permanent water bodies in the area, (2) fish will be mainly of small body size, (3) species will be randomly distributed across habitats, and (4) there will be a high degree of diet overlap between species and age classes. The first and second predictions were supported. The pond consisted of 10 resident species in 1985, and at least seven in 1988. Species richness was below the average of 13.2 found in four lakes in the vicinity, but greater than the 3.1 predicted by a species-area curve for non-acidified lakes in Ontario. All species except pumpkinseed, yellow perch and brown bullheads were small-bodied with short life spans and high population turnover rates, and few fish above 100 mm were present. Predictions 3 and 4 were not supported. Habitat occupation was nonrandom, and high diet separation occurred, particularly in August when food limitation was evident. While beaver ponds lack the range of habitats and the diversity of species of lake environments, low prey density and high fish density nevertheless appear to foster resource partitioning.  相似文献   

16.
The relative importance of extrinsic and intrinsic causes of variability is among the oldest unresolved problems in ecology. However, the interaction between large-scale intrinsic variability in species abundance and environmental heterogeneity is still unknown. We use a metacommunity model with disturbance-recovery dynamics to resolve the interaction between scales of environmental heterogeneity, biotic processes and of intrinsic variability. We explain how population density increases with environmental variability only when its scale matches that of intrinsic patterns of abundance, through their ability to develop in heterogeneous environments. Succession dynamics reveals how the strength of local species interactions, through its control of intrinsic variability, can in turn control the scale of metapopulation response to environmental scales. Our results show that the environment and species density might fail to show any correlation despite their strong causal association. They more generally suggest that the spatial scale of ecological processes might not be sufficient to build a predictive framework for spatially heterogeneous habitats, including marine reserve networks.  相似文献   

17.
18.
Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignificantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others.  相似文献   

19.
We examined the effect of range size in commonly applied macroecological analyses using continental distribution data for all 550 Neotropical palm species (Arecaceae) at varying grain sizes from 0.5° to 5°. First, we evaluated the relative contribution of range-restricted and widespread species on the patterns of species richness and endemism. Second, we analysed the impact of range size on the predictive value of commonly used predictor variables. Species sequences were produced arranging species according to their range size in ascending, descending, and random order. Correlations between the cumulative species richness patterns of these sequences and environmental predictors were performed in order to analyse the effect of range size. Despite the high proportion of rare species, patterns of species richness were found to be dominated by a minority of widespread species (∼20%) which contained 80% of the spatial information. Climatic factors related to energy and water availability and productivity accounted for much of the spatial variation of species richness of widespread species. In contrast, species richness of range-restricted species was to a larger extent determined by topographical complexity. However, this effect was much more difficult to detect due to a dominant influence of widespread species. Although the strength of different environmental predictors changed with spatial scale, the general patterns and trends proved to be relatively stabile at the examined grain sizes. Our results highlight the difficulties to approximate causal explanations for the occurrence of a majority of species and to distinguish between contemporary climatic factors and history.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号