首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hedgehog signal transduction: recent findings   总被引:21,自引:0,他引:21  
The Hedgehog (Hh) family of signaling molecules are key agents in patterning numerous types of tissues. Mutations in Hh and its downstream signaling molecules are also associated with numerous oncogenic and disease states. Consequently, understanding the mechanisms by which Hh signals are transduced is important for understanding both development and disease. Recent studies have clarified several aspects of Hh signal transduction. Several new Sonic Hedgehog binding partners have been identified. Cholesterol and palmitic acid modifications of Hh and Sonic hedgehog have been examined in greater detail. Characterization of the trafficking patterns of the Patched and Smoothened proteins has demonstrated that these two proteins function very differently from the previously established models. The Fused kinase has been demonstrated to phosphorylate the kinesin-like protein Costal2 and the sites identified, while Cubitus interruptus has been shown to be phosphorylated in a hierarchical manner by three different kinases. Finally, the interactions, both genetic and physical, between Fused, Costal2, Cubitus interruptus, and Suppressor of Fused have been further elucidated.  相似文献   

3.
4.
Zhang Y  Mao F  Lu Y  Wu W  Zhang L  Zhao Y 《Cell research》2011,21(10):1436-1451
The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates. As one of main morphogens during metazoan development, the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail, leading to pathway activation and the differential expression of target genes. However, how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood. Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci) nuclear localization information. Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2, which further induces Fu dimerization. Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)). We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu), and results in the translocation of Ci155 into the nucleus, activating the expression of target genes.  相似文献   

5.
6.
7.
8.
9.
Hedgehog (Hh) signal transduction requires a large cytoplasmic multi-protein complex that binds microtubules in an Hh-dependent manner. Here, we show that three members of this complex, Costal2 (Cos2), Fused (Fu), and Cubitus interruptus (Ci), bind each other directly to form a trimeric complex. We demonstrate that this trimeric signaling complex exists in Drosophila lacking Suppressor of Fused (Su(fu)), an extragenic suppressor of fu, indicating that Su(fu) is not required for the formation, or apparently function, of the Hh signaling complex. However, we subsequently show that Su(fu), although not a requisite component of this complex, does form a tetrameric complex with Fu, Cos2, and Ci. This additional Su(fu)-containing Hh signaling complex does not appear to be enriched on microtubules. Additionally, we demonstrate that in response to Hh Ci accumulates in the nucleus without its various cytoplasmic binding partners, including Su(fu). We discuss a model in which Su(fu) and Cos2 each bind to Fu and Ci to exert some redundant effect on Ci such as cytoplasmic retention. This model is consistent with genetic data demonstrating that Su(fu) is not required for Hh signal transduction proper and with the elaborate genetic interactions observed among Su(fu), fu, cos2, and ci.  相似文献   

10.
11.
12.
13.
Hedgehog signaling: Costal-2 bridges the transduction gap   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
17.
The two signalling proteins, Wingless and Hedgehog, play fundamental roles in patterning cells within each metamere of the Drosophila embryo. Within the ventral ectoderm, Hedgehog signals both to the anterior and posterior directions: anterior flanking cells express the wingless and patched Hedgehog target genes whereas posterior flanking cells express only patched. Furthermore, Hedgehog acts as a morphogen to pattern the dorsal cuticle, on the posterior side of cells where it is produced. Thus responsive embryonic cells appear to react according to their position relative to the Hedgehog source. The molecular basis of these differences is still largely unknown. In this paper we show that one component of the Hedgehog pathway, the Fused kinase accumulates preferentially in cells that could respond to Hedgehog but that Fused concentration is not a limiting step in the Hedgehog signalling. We present direct evidence that Fused is required autonomously in anterior cells neighbouring Hedgehog in order to maintain patched and wingless expression while Wingless is in turn maintaining engrailed and hedgehog expression. By expressing different components of the Hedgehog pathway only in anterior, wingless-expressing cells we could show that the Hedgehog signalling components Smoothened and Cubitus interruptus are required in cells posterior to Hedgehog domain to maintain patched expression whereas Fused is not necessary in these cells. This result suggests that Hedgehog responsive ventral cells in embryos can be divided into two distinct types depending on their requirement for Fused activity. In addition, we show that the morphogen Hedgehog can pattern the dorsal cuticle independently of Fused. In order to account for these differences in Fused requirements, we propose the existence of position-specific modulators of the Hedgehog response.  相似文献   

18.
19.
Sex-lethal is the Drosophila melanogaster sex determination master switch. It is also required in female germ cells to control mitosis and meiotic recombination. As early germ cells mature, distinct changes in both Sex-lethal protein levels and localization occur. By manipulating the levels of Hedgehog and making germline clones of components in the hedgehog signaling pathway, we demonstrate that Hedgehog affects the nuclear translocation of Sex-lethal and the levels of the protein in early germ cells. This effect is mediated primarily through degradation. Consistent with the Hedgehog pathway regulating Sex-lethal, we find Sex-lethal in a complex with Fused and Costal-2, both downstream components of the pathway. This is the first demonstration that downstream components of the Hedgehog signaling pathway regulate a target other than Cubitus interruptus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号