首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

2.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.  相似文献   

3.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

4.
A pulse dilution 15N technique was used in the field to determine the effect of the ammonium to nitrate ratio in a fertilizer application on the uptake of ammonium and nitrate by ryegrass and on gross rates of mineralization and nitrification. Two experiments were performed, corresponding approximately to the first and second cuts of grass. Where no substantial recent immobilization of inorganic nitrogen had occurred, mineralization was insensitive to the form of nitrogen applied, ranging from 2.1–2.6 kg N ha-1 d-1. The immobilization of ammonium increased as the proportion of ammonium in the application increased. In the second experiment there was evidence that high rates of immobilization in the first experiment were associated with high rates of mineralization in the second. The implication was that some nitrogen immobilized in the first experiment was re-mineralized during the second. Whether this was nitrogen taken up, stored in roots and released following defoliation was not clear. Nitrification rates in this soil were low (0.1–0.63 kg N ha-1 d-1), and as a result, varying the ratio of ammonium to nitrate applied markedly altered the relative uptake of ammonium and nitrate. In the first experiment, where temperatures were low, preferential uptake of ammonium occurred, but where >90% of the uptake was as ammonium, a reduction in yield and nitrogen uptake was observed. In the second experiment, where temperatures and growth rates were higher, the proportion of ammonium to nitrate taken up had no effect on yield or nitrogen uptake.  相似文献   

5.
Summary The15N natural abundance values of various Amazon floodplain (várzea) plants was investigated. Samples of young leaf tissues were collected during three different periods of the river hydrography (low water, mid rising water and high water) and during one period in the Madeira River (high water). A large variation of15N abundance was observed, both among the different plant types and between the different flood stages. This variation probably, reflected, in part, the highly variable nature of the floodplain, sometimes dry and oxygenated and at other times inundated and anaerobic and, in part, changes in plant nitrogen metabolism. Comparison of the nitrogen isotopic composition of leguminous plants with that of non-leguminous plants showed that, on average, the15N abundance was lower in the legumes than non-legumes, suggesting active N-fixation. Also, the15N natural abundance in aquatic grasses of the generaPaspalum, was in general, lower than the15N abundance of aquatic grasses of the generaEchinochloa. As both of these grasses grow in the same general habitat, it appears thatPaspalum grasses may also be nitrogen fixers.  相似文献   

6.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

7.
Eshetu  Zewdu  Högberg  Peter 《Plant and Soil》2000,222(1-2):109-117
We used the natural abundance of 15N in soils in forests, pastures and cultivated lands in the Menagesha and Wendo-Genet areas of Ethiopia to make inferences about the N cycles in these ecosystems. Since we have described the history of these sites based on variations in 13C natural abundance, patterns of δ15N and δ13C values were compared to determine if shifts of 15N correlate with shifts of vegetation. At Menagesha, a > 500-yr-old planted forest, we found δ15N values from −8.8 to +3.5‰ in litter, from −3.5 to +4.5‰ in 0–10 cm soil layer, and from −1.5 to +6.8‰ at >20 cm soil depth. The low δ15N in litter and surface mineral soils suggests that a closed N cycle has operated for a long time. At this site, the low δ13C of the surface horizon and the high δ13C of the lower soil horizons is clear evidence of a long phase of C4 grass dominance or cultivation of C4 crops before the establishment of the forest >500 years ago. In contrast, at Wendo-Genet, high δ13C of soils reveals that most of the land has been uncovered by forests until recently. Soil δ15N was high throughout (3.4–9.8‰), and there were no major differences between forested, cultivated and pasture soils in δ15N values of surface mineral soils. The high δ15N values suggest that open N cycles operate in the Wendo-Genet area. From the points of view of soil fertility management, it is interesting that tall forest ecosystems with relatively closed N cycling could be established on the fairly steep slopes at Menagesha after a long period of grass vegetation cover or cultivation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Arndt SK  Kahmen A  Arampatsis C  Popp M  Adams M 《Oecologia》2004,141(3):385-394
The Central Asian Taklamakan desert is characterized by a hyperarid climate with less than 50 mm annual precipitation but a permanent shallow groundwater table. The perched groundwater (2–16 m) could present a reliable and constant source of nitrogen throughout the growing season and help overcome temporal nitrogen limitations that are common in arid environments. We investigated the importance of groundwater and nitrogen fixation in the nitrogen metabolism of desert plants by assessing the possible forms and availability of soil N and atmospheric N and the seasonal variation in concentration as well as isotopic composition of plant N. Water availability was experimentally modified in the desert foreland through simulated flooding to estimate the contribution of surface water and temporally increased soil moisture for nutrient uptake and plant–water relations. The natural vegetation of the Taklamakan desert is dominated by plants with high foliar nitrogen concentrations (2–3% DM) and leaf nitrate reductase activity (NRA) (0.2–1 mol NO2 g–1 FW h–1). There is little evidence that nitrogen is a limiting resource as all perennial plants exhibited fast rates of growth. The extremely dry soil conditions preclude all but minor contributions of soil N to total plant N so that groundwater is suggested as the dominant source of N with concentrations of 100 M NO3. Flood irrigation had little beneficial effect on nitrogen metabolism and growth, further confirming the dependence on groundwater. Nitrogen fixation was determined by the 15N natural abundance method and was a significant component of the N-requirement of the legume Alhagi, the average contribution of biologically fixed nitrogen in Alhagi was 54.8%. But nitrogen fixing plants had little ecological advantage owing to the more or less constant supply of N available from groundwater. From our data we conclude that the perennial species investigated have adapted to the environmental conditions through development of root systems that access groundwater to satisfy demands for both water and nutrients. This is an ecologically favourable strategy since only groundwater is a predictable and stable resource.  相似文献   

9.
Tjepkema  J.D.  Schwintzer  C.R.  Burris  R.H.  Johnson  G.V.  Silvester  W.B. 《Plant and Soil》2000,219(1-2):285-289
Substantial enrichment of some plant parts in 15N relative to the rest of the plant is unusual, but is found in the nitrogen-fixing nodules of many legumes. A range of actinorhizal plants was surveyed to determine whether the nodules of any of them are also substantially enriched in 15N. The nonlegume Parasponia, nodulated by a rhizobium, was also included. Four of the actinorhizal genera and Parasponia were grown in N-free culture, and three actinorhizal genera were collected from the field. Nodules of Parasponia, Casuarina and Alnus were15N enriched relative to other plant parts, but only Parasponia approached the degree of enrichment found in some legume nodules. The nodules of Datisca, Myrica, Elaeagnus, Shepherdia, and Coriaria were depleted in 15N. Thus many actinorhizal nodules are depleted in 15N compared to other plant parts and enrichment is modest when it does occur. Whole plant 15N content (15N) in four actinorhizal plants and Parasponia showed a relatively narrow range of –1.41 to –1.90. Hence regardless of the degree of nodule enrichment or depletion, whole plant 15N content appears to vary little in plants grown in N-free culture.  相似文献   

10.
The ability to utilize NO inf3 sup– in seven high arctic plant species from Truelove Lowland, Devon Island, Canada was investigated, using an in vivo assay of maximum potential nitrate reductase (NR) activity and applications of 15N. Plant species were selected on the basis of being characteristic of nutrient-poor and nutrient-rich habitats. In all species leaves were the dominant site of NR activity. Root NR activity was negligible in all species except Saxifraga cernua. NO inf3 sup– availability per se did not appear to limit NR activity of the species typically found on nutrient-poor sites (Dryas integrifolia, Saxifraga oppositifolia, and Salix arctica), or in Cerastium alpinum, as leaf NR activities remained low, even after NO inf3 sup– addition. 15NO inf3 sup– uptake was limited in D. integrifolia and Salix arctica. However, the lack of field induction of NR activity in C. alpinum and Saxifraga oppositifolia was not due to restricted nitrate uptake, as 15NO inf3 sup– labelled NO inf3 sup– entered the roots and shoots of both species. Leaf NR activity rates were low in three of the species typical of nutrient-rich habitats (O. digyna, P. radicatum and Saxifraga cernua), sampled from a site containing low soil NO inf3 sup– . Additions of NO inf3 sup– significantly increased leaf NR activity in these latter species, suggesting that potential NR activity was limited by the availability of NO inf3 sup– . 15N labelled NO inf3 sup– was taken up by O. digyna. P. radicatum and Saxifraga cernua. Although two species (D. integrifolia and Salix arctica) showed little utilization of NO inf3 sup– , we concluded that five of the seven selected high arctic plant species (C. alpinum, O. digyna, P. radicatum, Saxifraga cernua and Saxifraga oppositifolia) do have the potential to utilize NO inf3 sup– as a nitrogen source under field conditions, with the highest potential to utilize NO inf3 sup– occurring in three of the species typically found on fertile habitats.  相似文献   

11.
This study presents the latitudinal variation (from 60° 30′ N to 68° 2′ N latitude) of natural abundances of 15N in the foliage, humus and soils of boreal forests of Finland. Our results clearly showed that N concentration of the foliage did not change significantly with latitudes but their 15N values were significantly higher in higher latitude sites relative to that of the mid and lower latitude sites, indicating the different forms of N uptake at the higher latitudes compared to the lower latitudes. We assume that the higher foliage δ15N values of the higher latitudes trees might be due to either more openness of N cycle (greater proportional N losses) in these latitudes compared to the sites of southern latitudes (lower N losses) or the differences in their mycorrhizal associations. Regression analysis showed that the temperature was the main factor influencing the 15N natural abundance of humus and soil of all forest ecosystems, both before and after clear-cut, whereas rainfall was the main controlling factor to the foliage 15N. Possible reasons behind the increasing δ15N natural abundances of plants and soils with increasing latitudes are discussed in this paper. The clear-cut did not show any specific trend on the 15N fractionation in humus and soil, i.e. both 15N-enrichment and -depletion occurred after clear-cut.  相似文献   

12.
15N abundances of soils and a grass species (Deschampsia flexuosa (L.) Trin.) were analysed in a forest fertilization experiment 10 years after the last fertilization. Nitrogen had been given as urea, at seven doses, ranging from 0 to 2400 kg N ha-1. Previously, we have shown that plants in systems experiencing large losses of N become enriched with 15N. This was explained by the fact that processes leading to loss of N, e.g. ammonia volatilization, nitrification followed by leaching or denitrification and denitrification itself, tend to fractionate against 15N. In this experiment, 15N abundance increased with dose of N applied in both grass and soil total-N, but more so in the grass. This was interpreted to be due to the grass sampling small but active pools of N subject to losses. In contrast, soil total-N largely consists of inactive N that does not immediately exchange with pools of N from which fractionating losses occur. Hence, soil total-N shows a large pretreatment 15N memory effect, and is, therefore, and integrator of the long-term N balance. When short-term changes (years, decades) in N balances are monitored using variations in 15N abundance, plants are more suitable indicators of such change than is soil total-N.  相似文献   

13.
N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar than the regional driver of N deposition. Foliar increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root was more tightly coupled to forest floor properties than was foliar . We observed a pattern of decreasing foliar values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar included species composition and climate. Relationships between foliar and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar , due to the importance of ammonium deposition in this region. Our results suggest that examining values of foliage may improve understanding of how forests respond to the cascading effects of N deposition.  相似文献   

14.
T. H. E. Heaton 《Oecologia》1987,74(2):236-246
Summary Data are presented for the 15N/14N ratios of 140 indigenous terrestrial plants from a wide variety of natural habitats in South Africa and Namibia. Over much of the area, from high-rainfall mountains to arid deserts, the 15N values of plants lie typically in the range -1 to +6; with no evident differences between C3 plants and C4 grasses. There is a slight correlation between 15N and aridity, but this is less marked than the correlation between the 15N values of animal bones and aridity. At coastal or saline sites, however, the mean 15N values for plants are higher than those at nearby inland or non-saline sites-e.g.: arid Namib coast (10 higher than inland Namib); wet Natal beach (5 higher than inland Natal); saline soils 500 km from coast (4 higher than non-saline soils). High values were also found at one site where there were no marked coastal or saline influences. These environmental effects on the isotopic composition of plants will extend upwards to the animals and humans they support. They therefore have important consequences for the use of nitrogen isotope data in the study of the dietary habits and trophic structures of modern and prehistoric communities.  相似文献   

15.
A triple resonance NMR experiment is presented for the simultaneous recording of HNCA and HNCO data sets on 15N, natural abundance 13C samples. The experiment exploits the fact that transfers of magnetization from 15N to 13CO and from 15N to 13C (and back) proceed independently for samples that are not enriched in 13C. A factor of 2 in measuring time is gained by recording the two data sets simultaneously with no compromise in spectral quality. An application to a 0.5 mM 15N labeled sample of protein-L is presented with all expected correlations observed in spectra recorded with a cryogenic probe at 500 MHz.  相似文献   

16.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

17.
Preliminary attempts to make retrospective studies of N balances and water stress in forest fertilization experiments by analyzing changes in the abundances of 15N and 13C, respectively, are discussed. Most evidence is from the Swedish Forest Optimum Nutrition Experiments, which have been running for two decades. Annual additions of N have been given either alone or in combination with other elements, notably P and K, every third year. Processes leading to loss of N, e.g. volatilization of ammonia, nitrification followed by leaching or denitrification, and denitrification alone, discriminate against the heavy isotope 15N. A correlation was found between fractional losses of added N and the change in 15N () during 19 years in current needles in a Scots pine forest, irrespective of source of N. Isotope effects were larger on urea than on ammonium nitrate plots (2 as compared to 9 15N ()) because of ammonia volatilization and higher rates of nitrification. They developed gradually over time, which opens possibilities to analyse the development of N saturation. However, the analysis may be confounded by shifts in 15N abundance of fertilizer N. In another trial, N isotope effects could be seen in both plants and soils 10 years after the last fertilization; they were smaller in soils because of a large pretreatment memory effect, but we expect them to persist there for decades.The enzyme RuBisCo discriminates strongly against the heavy isotope 13C during photosynthesis, but this effect becomes less expressed as stomata close because of water stress. The supply of N may also affect the 13C () via effects on rates of photosynthesis, and the source of N may have an influence directly via non-RubisCo carboxylations, and indirectly via effects on water use efficiency. In a trial with Norway spruce, the effect of N fertilization on the 13C () of current needles was strongly correlated with production and weakly so with foliar biomass a dry year, but not a wet year. This suggested that these variations are primarily related to induced differences in the balance between supply and demand for water. Hence, studies of {au13}C abundance can disentangle the role of water as such from its effects on mineralization of N and flow of N.  相似文献   

18.
Summary The relative nitrogen fixation efficiencies (RE 1-[H2 evolved÷C2H2 reduced]·100) of four mesquite (Prosopis glandulosa var.torreyana) rhizobia (Strains WR 1001, WR 1002, L5, L9) and a cowpea rhizobia (Strain 176A32) on mesquite were evaluated in a glasshouse experiment. Plant yield, shoot N accumulation, and the natural15N abundance (15N) of nodule tissue were determined. Strain WR 1002 failed to nodulate mesquite and strain L5 produced ineffective nodules. Among the three effective strains (WR 1001, L9, 176A32) the cowpea strain (176A32) and strain L9 had significantly higher RE than strain WR 1001. Differences in RE, however, were not accompanied by significantly higher plant yield and shoot N accumulation. The difference in15N abundance between foliar tissue and nodules (nodules minus leaves) was 0.47 15N for the ineffective L5 nodules, while for the effective WR 1001, L9, and 176A32 nodules, respectively, this difference was 8.35, 7.81, and 8.35 15N. This indicates a similar relationship between N2-fixing effectiveness and natural15N enrichment of nodules that was previously observed in soybeans (Glycine max, L. Merr.). Strains WR 1001 and L9 produced elongate, indeterminate nodules typical for mesquite. The ineffective L5 nodules had few infected cells and an abundance of cortical amyloplasts. Mesquite nodules produced by the cowpea strain were spherical and were somewhat more similar in internal morphology to determinate nodules typical of cowpea than indeterminate nodules normally associated with mesquite.  相似文献   

19.
We present a theory describing how the δ15N values of the nitrogen (N) pools in a vascular plant depend on that of its source N (nitrate), on 15N/14N fractionations during N assimilation, and on N transport within and N loss from the plant. The theory allows measured δ15N values to be interpreted in terms of physiological processes. The δ15N values of various N pools are calculated using three rules: (1) when a pool divides without transformation, there is no change in the δ15N values of the N entering the resulting pools; (2) when nitrate is assimilated by nitrate reductase, the δ15N values of the resulting pools (product and residual substrate) are described by a Rayleigh equation; (3) when two N pools mix, the δ15N value of the mixture is a weighted average of the δ15N values of the component pools. The theory is written as a spreadsheet and solved numerically. Potentially, it has multiple solutions. Some contravene physiological reality and are rejected. The remainder are distinguished, where possible, using additional physiological information. The theory simulated independent measurements of δ15N in N pools of Brassica campestris L. var. rapa (komatsuna) and Lycopersicon esculentum Mill. cv. T-5 (tomato). Received: 27 October 1997 / Accepted: 13 January 1998  相似文献   

20.
Nitrogen (N) transfer from one species to another is important for the N cycling in low-input grassland. In the present work, estimates obtained by an indirect 15N dilution technique were compared with estimates obtained by a direct 15N leaf feeding technique over two complete growing seasons in red clover-ryegrass and white clover-ryegrass mixtures under field conditions. The direct technique confirmed that N transfer between clovers and ryegrass is a bi-directional process. The transfer of N from both clovers to ryegrass occurred within 25 days upon the first labelling event. A very high N transfer occurred from white clover to the associated ryegrass, 4.5 and 7.5 g m−2 in the 1st and 2nd production year, respectively. The corresponding values for transfer from red clover to the associated ryegrass were 1.7 and 3.6 g m−2. Quantified relatively to the total above-ground N content of white clover- ryegrass and red clover-ryegrass mixtures, the N transfer exceeded 50% and 10%, respectively, in three out of seven harvests. The N transfer from 15N labelled grass to associated clovers constituted a relatively constant proportion of approx. 8% of the above-ground N content of the mixtures. Estimates based on the soil 15N dilution technique generally underestimated the net N transfer by more than 50% compared to the direct 15N labelling technique. Furthermore, the indirect 15N dilution technique estimated only marginal differences between red and white clover in the quantities of N transferred, whereas the direct 15N labelling technique showed the N transfer from white clover to the associated ryegrass to be significantly higher than that involving red clover. It is concluded that N transfer is a much more dynamic and quantitatively important process in grassland than previously recognised. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号