首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mills SA  Goto Y  Su Q  Plastino J  Klinman JP 《Biochemistry》2002,41(34):10577-10584
A recent report by Mills and Klinman [Mills, S. A., and Klinman, J. P. (2000) J. Am. Chem. Soc. 122, 9897-9904] described the preparation and initial characterization of a cobalt-substituted form of the copper amine oxidase from Hansenula polymorpha (HPAO). This enzyme was found to be fully catalytically active at saturating substrate concentrations, but with a K(m) for O(2) approximately 70-fold higher than that of the copper-containing, wild-type enzyme. Herein, we report a detailed analysis of the mechanism of catalysis for the wild-type and the cobalt-substituted forms of HPAO. Both forms of enzyme are concluded to utilize the same mechanism for oxygen reduction, involving initial, rate-limiting electron transfer from the reduced cofactor of the enzyme to prebound dioxygen. Superoxide formed in this manner is stabilized by the active site metal, facilitating the transfer of a second electron and two protons to form the product hydrogen peroxide. The elevated K(m) for O(2) at the dioxygen binding site in Co-substituted HPAO, relative to that of wild-type HPAO, is proposed to be due to a change in the net charge at the adjacent metal site from +1 (cupric hydroxide) in wild-type enzyme to +2 (cobaltous H(2)O) in cobalt-substituted HPAO.  相似文献   

3.
We report on the rerouting of peroxisomal alcohol oxidase (AO) to the secretory pathway of Hansenula polymorpha. Using the leader sequence of the Saccharomyces cerevisiae mating factor alpha (MFalpha) as sorting signal, AO was correctly sorted to the endoplasmic reticulum (ER), which strongly proliferated in these cells. The MFalpha presequence, but not the prosequence, was cleaved from the protein. AO protein was present in the ER as monomers that lacked FAD, and hence was enzymatically inactive. Furthermore, the recombinant AO protein was subject to gradual degradation, possibly because the protein did not fold properly. However, when the S. cerevisiae invertase signal sequence (ISS) was used, secretion of AO protein was observed in conjunction with bulk of the protein being localized to the ER. The amount of secreted AO protein increased with increasing copy numbers of the AO expression cassette integrated into the genome. The secreted AO protein was correctly processed and displayed enzyme activity.  相似文献   

4.
The accessibility of large substrates to buried enzymatic active sites is dependent upon the utilization of proteinaceous channels. The necessity of these channels in the case of small substrates is questionable because diffusion through the protein matrix is often assumed. Copper amine oxidases contain a buried protein-derived quinone cofactor and a mononuclear copper center that catalyze the conversion of two substrates, primary amines and molecular oxygen, to aldehydes and hydrogen peroxide, respectively. The nature of molecular oxygen migration to the active site in the enzyme from Hansenula polymorpha is explored using a combination of kinetic, x-ray crystallographic, and computational approaches. A crystal structure of H. polymorpha amine oxidase in complex with xenon gas, which serves as an experimental probe for molecular oxygen binding sites, reveals buried regions of the enzyme suitable for transient molecular oxygen occupation. Calculated O(2) free energy maps using copper amine oxidase crystal structures in the absence of xenon correspond well with later experimentally observed xenon sites in these systems, and allow the visualization of O(2) migration routes of differing probabilities within the protein matrix. Site-directed mutagenesis designed to block individual routes has little effect on overall k(cat)/K(m) (O(2)), supporting multiple dynamic pathways for molecular oxygen to reach the active site.  相似文献   

5.
Import of Hansenula polymorpha alcohol oxidase (AO) into peroxisomes is dependent on the PTS1 receptor, HpPex5p. The PTS1 of AO (-LARF) is sufficient to direct reporter proteins to peroxisomes. To study AO sorting in more detail, strains producing mutant AO proteins were constructed. AO containing a mutation in the FAD binding fold was mislocalized to the cytosol. This indicates that the PTS1 of AO is not sufficient for import of AO. AO protein in which the PTS1 was destroyed (-LARA) was normally sorted to peroxisomes. Moreover, C-terminal deletions of up to 16 amino acids did not significantly affect AO import, indicating that the PTS1 was not necessary for targeting. Consistent with these observations we found that AO import occurred independent from the C-terminal TPR-domain of HpPex5p, known to bind PTS1 peptides. Synthesis of the N-terminal domain (amino acids 1-272) of HpPex5p in pex5 cells restored AO import, whereas other PTS1 proteins were mislocalized to the cytosol. These data indicate that AO is imported via a novel HpPex5p-dependent protein translocation pathway, which does not require the PTS1 of AO and the C-terminal TPR domains of HpPex5p, but involves FAD binding and the N-terminus of HpPex5p.  相似文献   

6.
Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha   总被引:1,自引:0,他引:1  
Liiv L  Pärn P  Alamäe T 《Gene》2001,265(1-2):77-85
The Hansenula polymorpha maltase structural gene (HPMAL1) was isolated from a genomic library by hybridization of the library clones with maltase-specific gene probe. An open reading frame of 1695 nt encoding a 564 amino-acid protein with calculated molecular weight of 65.3 kD was characterized in the genomic DNA insert of the plasmid p51. The protein sequence deduced from the HPMAL1 exhibited 58 and 47% identity with maltases from Candida albicans and Saccharomyces carlsbergesis encoded by CAMAL2 and MAL62, respectively, and 44% identity with oligo-alpha-1,6-glucosidase from Bacillus cereus. The recombinant Hansenula polymorpha maltase produced in Escherichia coli hydrolyzed p-nitrophenyl-alpha-D-glucopyranoside (PNPG), sucrose, maltose and alpha-methylglucoside and did not act on melibiose, cellobiose, trehalose and o-nitrophenyl-beta-D-galactopyranoside (ONPG). The affinity of the recombinant enzyme for its substrates increased in the order maltose 相似文献   

7.
The architecture of alcohol oxidase crystalloids occurring in vivo in the peroxisomes of methylotrophic yeasts was deduced from electron micrographs of similar crystals of the Hansenula polymorpha enzyme grown in vitro. Three characteristic views of the crystal are observed, as well as single layers in the very early stages of crystal formation. The crystal is concluded to be cubical, with every octameric molecule making the same contacts with four neighbors in one plane, at right angles to its fourfold axis. The unit cell contains six octamers, in three mutually orthogonal orientations, and two large holes, which can accommodate other peroxisomal proteins involved in methanol metabolism. The crystal contains channels, connecting the holes, which allow the diffusion of relatively large molecules through the crystal. Crystal formation depends on just one contact per subunit, which may explain the fragility of the crystals.  相似文献   

8.
Samuels NM  Klinman JP 《Biochemistry》2005,44(43):14308-14317
Copper amine oxidase (CAO) is a dual-functioning enzyme that catalyzes the biosynthesis of a self-derived coenzyme and subsequent oxidative deamination of primary amines. The organic cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), is generated from the post-translational modification of an active site tyrosine (Y405) in a reaction shown to be dependent on both molecular oxygen and a mononuclear copper center. Previous investigations of Cu(II)-dependent cofactor formation in the Hansenula polymorpha amine oxidase (HPAO) provided evidence for the coordination of the precursor tyrosine in forming a ligand-to-metal charge transfer complex as a means of activating the tyrosyl ring for direct attack by triplet-state dioxygen. To further delineate the role of the metal in facilitating this complex series of reactions, apo-HPAO was reconstituted with alternate metals of varying reduction potentials and Lewis acidities [Ni(II), Co(II), Mn(II), Fe(II), and Fe(III)] and the consequence of each substitution on TPQ biogenesis examined. Ni(II) was found to support the transformation of the precursor tyrosine to the quinone cofactor to yield a mature enzyme competent for methylamine oxidation. Detailed kinetic analysis of the mechanism of TPQ biogenesis for the Ni(II)-substituted enzyme has led to the proposal of a direct electron transfer from the metal-coordinated tyrosinate to dioxygen as the dominant rate-limiting step.  相似文献   

9.
Welford RW  Lam A  Mirica LM  Klinman JP 《Biochemistry》2007,46(38):10817-10827
The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.  相似文献   

10.
The fate of alcohol oxidase (AO) in chemostat-grown cells of Hansenula polymorpha, after its inactivation by KCN, was studied during subsequent cultivation of the cyanide-treated cells in fresh methanol media. Biochemical experiments showed that the cyanide-induced inactivation of AO was due to the release of flavin adenine dinucleotide (FAD) from the holo enzyme. However, dissociation of octameric AO into subunits was not observed. Subsequent growth of intact cyanide-treated cells in fresh methanol media was paralleled by proteolytic degradation of part of the peroxisomes present in the cells. The recovery of AO activity, concurrently observed in these cultures, was accounted for by synthesis of new enzyme protein. Reactivation of previously inactivated AO was not observed, even in the presence of FAD in such cultures. Newly synthesized AO protein was incorporated in only few of the peroxisomes present in the cells. 31P nuclear magnetic resonance (NMR) studies showed that cyanide-treatment of the cells led to a dissipation of the pH gradient across the peroxisomes membrane. However, restoration of this pH gradient was fast when cells were incubated in fresh methanol medium after removal of the cyanide.  相似文献   

11.
The fate of alcohol oxidase (AO) in chemostatgrown cells of Hansenula polymorpha, after its inactivation by KCN, was studied during subsequent cultivation of the cyanide-treated cells in fresh methanol media. Biochemical experiments showed that the cyanide-induced inactivation of AO was due to the release of flavin adenine dinucleotide (FAD) from the holo enzyme. However, dissociation of octameric AO into subunits was not observed. Subsequent growth of intact cyanide-treated cells in fresh methanol media was paralelled by proteolytic degradation of part of the peroxisomes present in the cells. The recovery of AO activity, concurrently observed in these cultures, was accounted for by synthesis of new enzyme protein. Reactivation of previously inactivated AO was not observed, even in the presence of FAD in such cultures. Newly synthesized AO protein was incorporated in only few of the peroxisomes present in the cells. 31P nuclear magnetic resonance (NMR) studies showed that cyanide-treatment of the cells led to a dissipation of the pH gradient across the peroxisomal membrane. However, restoration of this pH gradient was fast when cells were incubated in fresh methanol medium after removal of the cyanide.Abbreviations AO alcohol oxidase - FAD flavin adenine dinucleotide - CHI cycloheximide - NMR nuclear magnetic resonance - FPLC fast protein liquid chromatography - RIE rocket immuno electrophoresis  相似文献   

12.
DuBois JL  Klinman JP 《Biochemistry》2006,45(10):3178-3188
The copper amine oxidases catalyze the O(2)-dependent, two-electron oxidation of amines to aldehydes at an active site that contains Cu(II) and topaquinone (TPQ) cofactor. TPQ arises from the autocatalytic, post-translational oxidation of a tyrosine side chain within the same active site. The contributions of individual active site amino acids to each of these chemical processes are being delineated. Previously, using the amine oxidase from the yeast Hansenula polymorpha (HPAO), mutations of a strictly conserved and structurally pivotal active site tyrosine (Y305) were studied and their effects on the catalytic cycle demonstrated [Hevel, J. M., Mills, S. A., and Klinman, J. P. (1999) Biochemistry 38, 3683-3693]. This study examines mutations at the same position for their effects on cofactor generation. While the Y305A mutation had moderate effects on the kinetics of catalysis (2.5- and 8-fold effects on k(cat) using ethylamine and benzylamine as substrates), the same mutation slows cofactor formation by approximately 45-fold relative to that of the wild-type (WT). Additionally, the Y305A mutant forms at least two species: primarily TPQ at lower pH and a species with a blue-shifted absorbance at high pH (lambda(max) = 400 nm). The 400 nm species does not react with phenylhydrazine or ethylamine and is stable toward pH buffer exchange, long-term storage (>3 weeks), incubation at high temperatures, or incubation with reductants and colorimetric peroxide quenching reagents. A similar species accumulates appreciably even at approximately neutral pH in the Y305F mutant, despite the fact that the rate of TPQ formation is reduced only 3-fold relative to that of WT HPAO. This small impact of Y305F on the rate of biogenesis contracts with a decrease in k(cat) (using ethylamine as the substrate) of 125-fold. The opposing effects of mutations at position 305 in biogenesis versus catalysis indicate that a single residue can be recruited for different roles during these processes.  相似文献   

13.
Alcohol oxidase of methylotrophic yeast is an FAD-containing enzyme. When in its active form, the enzyme is an octamer and located in the peroxisomes. To study the importance of FAD-binding on the activity, octamerization and intracellular localization of the enzyme, alcohol oxidase of Hansenula polymorpha was mutated in its presumed nucleotide-binding domain, which is formed by the N-terminal sequence. Whereas mutations of a glutamic acid residue (E42) reduced the stability of the octamer, it hardly affected enzyme activity and expression. However, replacements of three conserved glycines (G13, G15 and G18) and a conserved glutamic acid (E39) within the fold had severe effects. The mutations not only resulted in loss of enzyme activity but in reduced protein levels as well, probably due to decreased stability of the mutant alcohol oxidase. However, octamerization of the protein still occurred. The existence of inactive octameric proteins provides information about the formation pathway of this octameric flavoprotein.  相似文献   

14.
Summary Many of the potential technical applications of alcohol oxidase (MOX; EC 1.1.3.13) are limited by the presence of high activities of catalase in the enzyme preparations. In order to circumvent laborious and costly purification or inactivation procedures, the induction of MOX in a catalase-negative mutant of Hansenula polymorpha has been studied. Emphasis was laid on the induction of activities of MOX and the dissimilatory enzymes in continuous cultures grown on various mixtures of formate/glucose and formaldehyde/glucose. In continuous cultures of the catalase-negative mutant grown on these mixtures, MOX can be induced efficiently. To obtain a stable and productive process, the ratio of the substrates is of critical importance. The optimal ratios of the mixtures for the catalase-negative strain for formate/glucose and formaldehyde/glucose were 3:1 and 1–2:1, respectively. Under identical cultivation conditions the wild-type strain showed similar induction patterns for MOX and the dissimilatory enzymes formaldehyde dehydrogenase (FaDH) and formate dehydrogenase (FoDH). The MOX levels in the catalase-negative strain were approx. 50% of those in the wild-type strain.  相似文献   

15.
Peroxisomal alcohol oxidase (AO) from Hansenula polymorpha is inactive and partially mislocalized to the cytosol upon synthesis in Saccharomyces cerevisiae. Co-production with H. polymorpha pyruvate carboxylase (HpPyc1p) resulted in AO activation, but did not improve import into peroxisomes. We show that import of AO mediated by S. cerevisiae Pex5p is strictly dependent on the peroxisomal targeting signal 1 (PTS1) of AO and independent of HpPyc1p. In contrast, HpPex5p-mediated sorting of AO into S. cerevisiae peroxisomes is independent of the PTS1, but requires an alternative PTS that is only formed when HpPyc1p is co-produced and most likely involves folding and co-factor binding to AO.  相似文献   

16.
Copper, a mediator of redox chemistries in biology, is often found in enzymes that bind and reduce dioxygen. Among these, the copper amine oxidases catalyze the oxidative deamination of primary amines utilizing a type(II) copper center and 2,4,5-trihydroxyphenylalanine quinone (TPQ), a covalent cofactor derived from the post-translational modification of an active site tyrosine. Previous studies established the dependence of TPQ biogenesis on Cu(II); however, the dependence of cofactor formation on the biologically relevant Cu(I) ion has remained untested. In this study, we demonstrate that the apoform of the Hansenula polymorpha amine oxidase readily binds Cu(I) under anaerobic conditions and produces the quinone cofactor at a rate of 0.28 h(-1) upon subsequent aeration to yield a mature enzyme with kinetic properties identical to the protein product of the Cu(II)-dependent reaction. Because of the change in magnetic properties associated with the oxidation of copper, electron paramagnetic resonance spectroscopy was employed to investigate the nature of the rate-limiting step of Cu(I)-dependent cofactor biogenesis. Upon aeration of the unprocessed enzyme prebound with Cu(I), an axial Cu(II) electron paramagnetic resonance signal was found to appear at a rate equivalent to that for the cofactor. These data provide strong evidence for a rate-limiting release of superoxide from a Cu(II)(O(2)(.)) complex as a prerequisite for the activation of the precursor tyrosine and its transformation for TPQ. As copper is trafficked to intracellular protein targets in the reduced, Cu(I) state, these studies offer possible clues as to the physiological significance of the acquisition of Cu(I) by nascent H. polymorpha amine oxidase.  相似文献   

17.
The subcellular localization of dihydroxyacetone synthase (DHAS) in the methylotrophic yeast Hansenula polymorpha was studied by various biochemical and immunocytochemical methods. After cell fractionation involving differential and sucrose gradient centrifugation of protoplast homogenates prepared from methanol-grown cells, DHAS cosedimented with the peroxisomal enzymes alcohol oxidase and catalase. Electron microscopy of this fraction showed that it contained mainly intact peroxisomes, whereas SDS-polyacrylamide gel electrophoresis revealed two major protein bands (75 and 78 kDa) which were identified as alcohol oxidase and DHAS, respectively. The localization of DHAS in peroxisomes was further established by immunocytochemistry. After immuno-gold staining carried out on ultrathin sections of methanol-grown H. polymorpha using DHAS-specific antibodies, labelling was confined to the peroxisomal matrix.Abbreviations MES 2-(N-morpholino)ethanesulfonic acid - DTT dithiothreitol - SDS sodium dodecyl sulphate - TPP thiamin pyrophosphate - DHAS dihydroxyacetone synthase - GSH reduced glutathione  相似文献   

18.
The role of the active site aspartate base in the aminotransferase mechanism of the copper amine oxidase from the yeast Hansenula polymorpha has been probed by site-directed mutagenesis. The D319E mutant catalyzes the oxidation of methylamine and phenethylamine, but not that of benzylamine. kcat/Km for methylamine is found to be 80-fold reduced compared to that of the wild type. Viscosogen and substrate and solvent deuteration have no effect on this parameter for D319E, which is suggestive of limitation of kcat/Km by a conformational change. This conformational change is proposed to be the movement of the cofactor into a productive orientation upon the binding of substrate. In the absence of substrate, a flipped cofactor orientation is likely, on the basis of resonance Raman evidence that the C5 carbonyl of the cofactor is less solvent accessible than the C3 hydrogen. kcat for D319E methylamine oxidase is reduced 200-fold compared to that of the wild type and is unaffected by substrate deuteration, but displays a substantial solvent isotope effect. A 428 nm absorbance is evident under conditions of saturating methylamine and oxygen with D319E. The D319N mutant is observed to produce a similar absorbance at 430 nm when treated with ammonia despite the fact that this mutant has no amine oxidase activity. Resonance Raman spectroscopy indicates the formation of a covalent ammonia adduct and identifies it as the deprotonated iminoquinone. In contrast, when the D319E mutant is reacted with ammonia, it gives predominantly a 340-350 nm species. This absorbance is ascribed to a localization of the cofactor oxyanion induced by binding of the cation at the active site and not to covalent adduct formation. Resonance Raman spectroscopic examination of the steady state species of D319E methylamine oxidation, in combination with the kinetic data, indicates that the 428 nm species is the deprotonated iminoquinone produced upon reoxidation of the reduced cofactor. A model is proposed in which a central role of the active site base is to position the free cofactor and several enzyme intermediates for optimal activity.  相似文献   

19.
In a recent study, we performed a systematic genome analysis for the conservation of genes involved in peroxisome biogenesis (PEX genes) in various fungi. We have now performed a systematic study of the morphology of peroxisome remnants ('ghosts') in Hansenula polymorpha pex mutants (pex1-pex20) and the level of peroxins and matrix proteins in these strains. To this end, all available H. polymorpha pex strains were grown under identical cultivation conditions in glucose-limited chemostat cultures and analyzed in detail. The H. polymorpha pex mutants could be categorized into four distinct groups, namely pex mutants containing: (1) virtually normal peroxisomal structures (pex7, pex17, pex20); (2) small peroxisomal membrane structures with a distinct lumen (pex2, pex4, pex5, pex10, pex12, pex14); (3) multilayered membrane structures lacking apparent matrix protein content (pex1, pex6, pex8, pex13); and (4) no peroxisomal structures (pex3, pex19).  相似文献   

20.
T Didion  R Roggenkamp 《FEBS letters》1992,303(2-3):113-116
The methylotrophic yeast, Hansenula polymorpha, harbours a unique catalase (EC 1.11.1.6), which is essential for growth on methanol as a carbon source and is located in peroxisomes. Its corresponding gene has been cloned and the nucleotide sequence determined. The deduced amino acid sequence displayed the tripeptide serine-lysine-isoleucine at the extreme C-terminus, which is similar to sequences of other peroxisomal targeting signals. Exchange of the ultimate amino acid, isoleucine, of catalase for serine revealed a cytosolic enzyme activity and a concomitant loss of peroxisome function. We concluded that the tripeptide is essential for targeting of catalase in H. polymorpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号