首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IL-33, a member of the IL-1 family of cytokines, has been shown to activate NF-κB and MAP kinase family through the IL-1 receptor-related protein, ST2L. In this study, we found that IL-33 rapidly activated a tyrosine kinase, JAK2. Interestingly, we demonstrated the functional involvement of JAK2 in IL-33-induced IκBα degradation and NF-κB activation, since a JAK2 inhibitor, AG490, effectively inhibited this signaling pathway. Furthermore, IL-33 failed to induce IκBα degradation and NF-κB activation in JAK2-deficient MEFs expressing ST2L, compared with wild-type MEFs expressing ST2L. In addition, the introduction of wild-type JAK2 but not kinase dead JAK2 mutant (K882R) restored the IL-33-induced efficient activation of NF-κB in JAK2-deficient MEFs expressing ST2L, resulting in the induction of IL-6, CCL2/MCP-1 and CXCL1/KC expression. On the other hand, the activation of ERK, JNK and p38 was unaffected by JAK2 inhibition and JAK2 deficiency. Thus, these data demonstrate that JAK2 plays an important role in regulating IL-33-induced NF-κB activation.  相似文献   

3.
TLR8-mediated NF-kappaB and IRF7 activation are abolished in human IRAK-deficient 293 cells and IRAK4-deficient fibroblast cells. Both wild-type and kinase-inactive mutants of IRAK and IRAK4, respectively, restored TLR8-mediated NF-kappaB and IRF7 activation in the IRAK- and IRAK4-deficient cells, indicating that the kinase activity of IRAK and IRAK4 is probably redundant for TLR8-mediated signaling. We recently found that TLR8 mediates a unique NF-kappaB activation pathway in human 293 cells and mouse embryonic fibroblasts, accompanied only by IkappaBalpha phosphorylation and not IkappaBalpha degradation, whereas interleukin (IL)-1 stimulation causes both IkappaBalpha phosphorylation and degradation. The intermediate signaling events mediated by IL-1 (including IRAK modifications and degradation and TAK1 activation) were not detected in cells stimulated by TLR8 ligands. TLR8 ligands trigger similar levels of IkappaBalpha phosphorylation and NF-kappaB and JNK activation in TAK1(-/-) mouse embryo fibroblasts (MEFs) as compared with wild-type MEFs, whereas lack of TAK1 results in reduced IL-1-mediated NF-kappaB activation and abolished IL-1-induced JNK activation. The above results indicate that although TLR8-mediated NF-kappaB and JNK activation are IRAK-dependent, they do not require IRAK modification and are TAK1-independent. On the other hand, TLR8-mediated IkappaBalpha phosphorylation, NF-kappaB, and JNK activation are completely abolished in MEKK3(-/-) MEFs, whereas IL-1-mediated signaling was only moderately reduced in these deficient MEFs as compared with wild-type cells. The differences between IL-1R- and TLR8-mediated NF-kappaB activation are also reflected at the level of IkappaB kinase (IKK) complex. TLR8 ligands induced IKKgamma phosphorylation, whereas IKKalpha/beta phosphorylation and IKKgamma ubiquitination that can be induced by IL-1 were not detected in cells treated with TLR8 ligands. We postulate that TLR8-mediated MEKK3-dependent IKKgamma phosphorylation might play an important role in the activation of IKK complex, leading to IkappaBalpha phosphorylation.  相似文献   

4.
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) plays an important role in the sequential formation and activation of IL-1-induced signaling complexes. Previous studies showed that IRAK is recruited to the IL-1-receptor complex, where it is hyperphosphorylated. We now find that the phosphorylated IRAK in turn recruits TRAF6 to the receptor complex (complex I), which differs from the previous concept that IRAK interacts with TRAF6 after it leaves the receptor. IRAK then brings TRAF6 to TAK1, TAB1, and TAB2, which are preassociated on the membrane before stimulation to form the membrane-associated complex II. The formation of complex II leads to the phosphorylation of TAK1 and TAB2 on the membrane by an unknown kinase, followed by the dissociation of TRAF6-TAK1-TAB1-TAB2 (complex III) from IRAK and consequent translocation of complex III to the cytosol. The formation of complex III and its interaction with additional cytosolic factors lead to the activation of TAK1, resulting in NF-kappaB and JNK activation. Phosphorylated IRAK remains on the membrane and eventually is ubiquitinated and degraded. Taken together, the new data reveal that IRAK plays a critical role in mediating the association and dissociation of IL-1-induced signaling complexes, functioning as an organizer and transporter in IL-1-dependent signaling.  相似文献   

5.
Vaccinia virus (VV) has many mechanisms to suppress and modulate the host immune response. The VV protein A52R was previously shown to act as an intracellular inhibitor of nuclear factor kappaB (NFkappaB) signaling by Toll-like receptors (TLRs). Co-immunoprecipitation studies revealed that A52R interacted with both tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 2 (IRAK2). The effect of A52R on signals other than NFkappaB was not determined. Here, we show that A52R does not inhibit TLR-induced p38 or c-Jun amino N-terminal kinase (JNK) mitogen activating protein (MAP) kinase activation. Rather, A52R could drive activation of these kinases. Two lines of evidence suggested that the A52R/TRAF6 interaction was critical for these effects. First, A52R-induced p38 MAP kinase activation was inhibited by overexpression of the TRAF domain of TRAF6, which sequestered A52R and inhibited its interaction with endogenous TRAF6. Second, a truncated version of A52R, which interacted with IRAK2 and not TRAF6, was unable to activate p38. Because interleukin 10 (IL-10) production is strongly p38-dependent, we examined the effect of A52R on IL-10 gene induction. A52R was found to be capable of inducing the IL-10 promoter through a TRAF6-dependent mechanism. Furthermore, A52R enhanced lipopolysaccharide/TLR4-induced IL-10 production, while inhibiting the TLR-induced NFkappaB-dependent genes IL-8 and RANTES. These results show that although A52R inhibits NFkappaB activation by multiple TLRs it can simultaneously activate MAP kinases. A52R-mediated enhancement of TLR-induced IL-10 may be important to virulence, given the role of IL-10 in immunoregulation.  相似文献   

6.
Considering the potential role of interleukin-8 (IL-8) in inflammation, angiogenesis, tumorigenesis, and metastasis, we investigated the molecular mechanism involved in IL-8-mediated signaling. In this report we provide evidence that like TNF, an inducer of NF-kappaB and also a NF-kappaB-dependent gene product, IL-8 induces NF-kappaB in a unique pathway. IL-8 induces NF-kappaB activation in a dose-dependent manner in different cell types as detected by a DNA-protein binding assay. IL-8 induces NF-kappaB-dependent reporter gene expression as well as ICAM-1, VCAM-1, and Cox-2 expression. IL-8 also induces IkappaBalpha phosphorylation followed by degradation and p65 translocation. IL-8 induces c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) in a dose- and time-dependent manner. IL-8-induced NF-kappaB activation is for the most part unaltered when cells are transfected with dominant-negative TRADD, FADD, or TRAF2, but is inhibited with dominant-negative TRAF6-, NIK-, IKK-, or IkappaBalpha-transfected cells. The data suggest that IL-8-induced NF-kappaB activation proceeds through a TRAF2-independent but TRAF6-dependent pathway, followed by recruitment of IRAK and activation of IKK. IL-8-induced NF-kappaB activation is not observed in a cell-permeable peptide that has TRAF6 binding motif-treated cells or IRAK-deficient cells. IL-8-induced NF-kappaB activation proceeds mostly through interaction with TRAF6 and partially through the Rho-GTPase pathways. This is the first report that IL-8 induces NF-kappaB in a distinct pathway, and activation of NF-kappaB and its dependent genes may be one of the pathways of IL-8-induced inflammation and angiogenesis.  相似文献   

7.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

8.
We have previously shown that the activity of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) is required for nerve growth factor (NGF)-induced activation of NF-kappaB and cell survival ((2002) J. Biol. Chem. 277, 28010-28018). Herein we demonstrate that NGF induces co-association of IRAK with atypical protein kinase C iota (PKC) and that the iota PKC.IRAK complex is recruited to the p75 neurotrophin receptor. Recruitment of IRAK to the receptor was dependent upon the activity of the iota PKC. Moreover, transfection of kinase-dead iota PKC blocked both NGF- and IL-1-induced IRAK activation and the activity of NF-kappaB. Hence, iota PKC lies upstream of IRAK in the kappaB pathway. Examining the primary structure of IRAK, we identified three putative PKC phosphorylation sites; iota PKC selectively phosphorylated peptide 1 (RTAS) within the death domain domain at Thr66, which is highly conserved among all IRAK family members. Mutation of Thr66 to Ala impaired the autokinase activity of IRAK and reduced its association with iota PKC but not TRAF6, resulting in impaired NGF- as well as IL-1-induced NF-kappaB activation. These findings provide insight into the underlying mechanism whereby IRAK regulates the kappaB pathway and reveal that IRAK is a substrate of iota PKC.  相似文献   

9.
The interleukin-1 (IL-1) receptor-associated kinase (IRAK) is required for the IL-1-induced activation of nuclear factor kappaB and c-Jun N-terminal kinase. The goal of this study was to understand how IRAK activates the intermediate proteins TRAF6, TAK1, TAB1, and TAB2. When IRAK is phosphorylated in response to IL-1, it binds to the membrane where it forms a complex with TRAF6; TRAF6 then dissociates and translocates to the cytosol. The membrane-bound IRAK similarly mediates the IL-1-induced translocation of TAB2 from the membrane to the cytosol. Different regions of IRAK are required for the translocation of TAB2 and TRAF6, suggesting that IRAK mediates the translocation of each protein separately. The translocation of TAB2 and TRAF6 is needed to form a TRAF6-TAK1-TAB1-TAB2 complex in the cytosol and thus activate TAK1. Our results show that IRAK is required for the IL-1-induced phosphorylation of TAK1, TAB1, and TAB2. The phosphorylation of these three proteins correlates strongly with the activation of nuclear factor kappaB but is not necessary to activate c-Jun N-terminal kinase.  相似文献   

10.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-kappaB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.  相似文献   

11.
IL-1 receptor-associated kinase (IRAK) is phosphorylated, ubiquitinated, and degraded upon interleukin-1 (IL-1) stimulation. In this study, we showed that IRAK can be ubiquitinated through both Lys-48- and Lys-63-linked polyubiquitin chains upon IL-1 induction. Pellino 3b is the RING-like motif ubiquitin protein ligase that promotes the Lys-63-linked polyubiquitination on IRAK. Pellino 3b-mediated Lys-63-linked IRAK polyubiquitination competed with Lys-48-linked IRAK polyubiquitination for the same ubiquitination site, Lys-134 of IRAK, thereby blocking IL-1-induced IRAK degradation. Importantly, the negative impact of Pellino 3b on IL-1-induced IRAK degradation correlated with the inhibitory effect of Pellino 3b on the IL-1-induced TAK1-dependent pathway, suggesting that a positive role of IRAK degradation in IL-1 induced TAK1 activation. Taken together, our results suggest that Pellino 3b acts as a negative regulator for IL-1 signaling by regulating IRAK degradation through its ubiquitin protein ligase activity.  相似文献   

12.
NF-kappaB downregulates tumor necrosis factor (TNF)-induced c-Jun N-terminal kinase (JNK) activation that promotes cell death, but the mechanism is not yet fully understood. By using murine embryonic fibroblasts (MEFs) that are deficient in TNF receptor-associated factor (TRAF) 2 and TRAF5 (DKO) or p65 NF-kappaB subunit (p65KO), we demonstrate here that TNF stimulation leads to accumulation of reactive oxygen species (ROS), which is essential for prolonged mitogen-activated protein kinase (MAPK) activation and cell death. Interestingly, dying cells show necrotic as well as apoptotic morphological changes as assessed by electron microscopy and flow cytometry, and necrotic, but not apoptotic, cell death is substantially inhibited by antioxidant. Importantly, TNF does not induce ROS accumulation or prolonged MAPK activation in wild-type MEFs, indicating that TRAF-mediated NF-kappaB activation normally suppresses the TNF-induced ROS accumulation that subsequently induces prolonged MAPK activation and necrotic cell death  相似文献   

13.
Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling   总被引:5,自引:0,他引:5  
IL-25 (IL-17E) induces IL-4, IL-5, and IL-13 production from an unidentified non-T/non-B cell population and subsequently induces Th2-type immune responses such as IgE production and eosinophilic airway inflammation. IL-25R is a single transmembrane protein with homology to IL-17R, but the IL-25R signaling pathways have not been fully understood. In this study, we investigated the signaling pathway under IL-25R, especially the possible involvement of TNFR-associated factor (TRAF)6 in this pathway. We found that IL-25R cross-linking induced NF-kappaB activation as well as ERK, JNK, and p38 activation. We also found that IL-25R-mediated NF-kappaB activation was inhibited by the expression of dominant negative TRAF6 but not of dominant negative TRAF2. Furthermore, IL-25R-mediated NF-kappaB activation, but not MAPK activation, was diminished in TRAF6-deficient murine embryonic fibroblast. In addition, coimmunoprecipitation assay revealed that TRAF6, but not TRAF2, associated with IL-25R even in the absence of ligand binding. Finally, we found that IL-25R-mediated gene expression of IL-6, TGF-beta, G-CSF, and thymus and activation-regulated chemokine was diminished in TRAF6-deficient murine embryonic fibroblast. Taken together, these results indicate that TRAF6 plays a critical role in IL-25R-mediated NF-kappaB activation and gene expression.  相似文献   

14.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) were identified as signal transducers for the TNF receptor superfamily. However, the exact roles of TRAF2 and TRAF5 in TNF-induced NF-kappaB activation still remain controversial. To address this issue, we generated TRAF2 and TRAF5 double knockout (DKO) mice. TNF- but not interleukin-1-induced nuclear translocation of NF-kappaB was severely impaired in murine embryonic fibroblasts (MEFs) derived from DKO mice. Moreover, DKO MEFs were more susceptible to TNF-induced cytotoxicity than TRAF2 knockout MEFs. Collectively, these results indicate that both TRAF2 and TRAF5 are involved in TNF-induced NF-kappaB activation and protection from cell death.  相似文献   

15.
16.
17.
TRAF2 and ASK1 play essential roles in tumor necrosis factor alpha (TNF-alpha)-induced mitogen-activated protein kinase signaling. Stimulation through TNF receptor 2 (TNFR2) leads to TRAF2 ubiquitination and subsequent proteasomal degradation. Here we show that TNFR2 signaling also leads to selective ASK1 ubiquitination and degradation in proteasomes. c-IAP1 was identified as the ubiquitin protein ligase for ASK1 ubiquitination, and studies with primary B cells from c-IAP1 knock-out animals revealed that c-IAP1 is required for TNFR2-induced TRAF2 and ASK1 degradation. Moreover, in the absence of c-IAP1 TNFR2-mediated p38 and JNK activation was prolonged. Thus, the ubiquitin protein ligase activity of c-IAP1 is responsible for regulating the duration of TNF signaling in primary cells expressing TNFR2.  相似文献   

18.
Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation.  相似文献   

19.
20.
Jensen LE  Whitehead AS 《FEBS letters》2003,553(1-2):190-194
Ubiquitination of intermediates in the interleukin-1 (IL-1) signaling cascade plays an important role in activation and regulation of the pathway. Both IL-1 receptor associated kinase-1 (IRAK1) and inhibitor of nuclear factor kappaB-alpha (IkappaBalpha) are rapidly ubiquitinated and degraded. Tumor necrosis factor associated factor-6 (TRAF6) is an ubiquitin ligase that is activated by ubiquitination and a signaling intermediate between IRAK1 and IkappaBalpha. It is unknown whether activated TRAF6 is subsequently degraded. We show that in liver cells IL-1 stimulates TRAF6 poly-ubiquitination. In less than 1 h levels of non-modified TRAF6 return to levels near those observed prior to activation. TRAF6 cannot be reactivated in cells which have been pretreated with IL-1. This observation correlates with decreased levels of IRAK1 in IL-1 pretreated cells. The re-establishment of non-modified TRAF6 levels following activation does not require de novo protein synthesis, strongly suggesting that TRAF6 is recycled via deubiquitination. This indicates a unique mechanism of regulation of TRAF6 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号