首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Deregulation of the HER2 oncogene occurs in 30% of human breast cancers and correlates with poor prognosis and increased propensity for metastasis. Since the molecular basis of HER2 overexpression in human cancers is not known, we sought to determine whether chromatin remodeling pathways are involved in the regulation of HER2 expression. We report that compared with breast cancer cells expressing a low level of HER2, HER2-overexpressing breast cancer cells contained significantly higher levels of acetylated and phosphorylated histone H3, and acetylated histone H4 associated with the HER2 promoter. Decreased recruitment of histone deacetylases in the promoter is also noted in the HER2-overexpressing cell. The association of acetylated histone H4 with HER2 gene chromatin and HER2 expression in breast cancer cells was upregulated by an inhibitor of histone deacetylases. Treatment with histone deacetylase inhibitor also reduced the association of histone deacetylase-1 and -2 with the HER2 promoter. In addition, the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and okadaic acid stimulated the association of phosphorylated histone H3 on serine 10 with the HER2 promoter and also stimulated HER2 expression. These findings identify histone acetylation and histone phosphorylation as novel regulatory modifications that target HER2 gene chromatin, and suggest that elevated levels of these chromatin-relaxing components in the vicinity of the HER2 gene promoter may constitute an important non-genomic mechanism of HER2 overexpression in human breast cancer.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The dynamics of chromatin remodeling at promoters   总被引:8,自引:0,他引:8  
Mellor J 《Molecular cell》2005,19(2):147-157
  相似文献   

18.
The sodium-dependent multivitamin transporter (SMVT) is essential for mediating and regulating biotin entry into mammalian cells. In cells, biotin is covalently linked to histones in a reaction catalyzed by holocarboxylase synthetase (HCS); biotinylation of lysine 12-biotinylated histone H4 (K12Bio H4) causes gene silencing. Here, we propose a novel role for HCS in sensing and regulating levels of biotin in eukaryotic cells. We hypothesized that nuclear translocation of HCS increases in response to biotin supplementation; HCS then biotinylates histone H4 at SMVT promoters, silencing biotin transporter genes. Jurkat lymphoma cells were cultured in media containing 0.025, 0.25, or 10 nmol/l biotin. The nuclear translocation of HCS correlated with biotin concentrations in media; the relative enrichment of both HCS and K12Bio H4 at SMVT promoter 1 (but not promoter 2) increased by 91% in cells cultured in medium containing 10 nmol/l biotin compared with 0.25 nmol/l biotin. This increase of K12Bio H4 at the SMVT promoter decreased SMVT expression by up to 86%. Biotin homeostasis by HCS-dependent chromatin remodeling at the SMVT promoter 1 locus was disrupted in HCS knockdown cells, as evidenced by abnormal chromatin structure (K12Bio H4 abundance) and increased SMVT expression. The findings from this study are consistent with the theory that HCS senses biotin, and that biotin regulates its own cellular uptake by participating in HCS-dependent chromatin remodeling events at the SMVT promoter 1 locus in Jurkat cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号