首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human pathogenic fungus Cryptococcus neoformans secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), lysophospholipase hydrolase and lysophospholipase transacylase activities. This enzyme has been postulated to be a cryptococcal virulence factor. We cloned a phospholipase-encoding gene (PLB1) from C. neoformans and constructed plb1 mutants using targeted gene disruption. All three enzyme activities were markedly reduced in the mutants compared with the wild-type parent. The plb1 strains did not have any defects in the known cryptococcal virulence phenotypes of growth at 37 degrees C, capsule formation, laccase activity and urease activity. The plb1 strains were reconstituted using the wild-type locus and this resulted in restoration of all extracellular PLB activities. In vivo testing demonstrated that the plb1 strain was significantly less virulent than the control strains in both the mouse inhalational model and the rabbit meningitis model. We also found that the plb1 strain exhibited a growth defect in a macrophage-like cell line. These data demonstrate that secretory phospholipase is a virulence factor for C. neoformans.  相似文献   

2.
  • 1.1. Preheparin plasma from mice, but not rats or man, contains high levels of phospholipase A and lysophospholipase activities which are distinct from lecithin:cholesterol acyltransferase (LCAT).
  • 2.2. Neither the phospholipase A nor the lysophospholipase activities in preheparin plasma are inhibited by incubation in the presence of protamine sulphate or high salt concentrations.
  • 3.3. When mouse plasma is incubated in the presence of an antiserum specific for rat hepatic triacylglycerol lipase (HTGL), the phospholipase activities are abolished.
  • 4.4. These observations suggest that the phospholipase activities are attributable to the action of HTGL, which, in the mouse appears to be a freely circulating enzyme, whereas for other species this enzyme only appears in the blood following administration of heparin.
  相似文献   

3.
Human plasma lecithin-cholesterol acyltransferase (LCAT) transacylates the sn-2 fatty acid of lecithin to cholesterol forming cholesteryl ester and lysolecithin. Measurement of the phospholipase A2 and transacylase activities of the enzyme using proteoliposome substrates and following selective chemical modification of serine, histidine, and cysteine residues of pure homogeneous LCAT indicated the following catalytic mechanism: HS-Cys-E-Ser-OH + lecithin in equilibrium HS-Cys-E-Ser-O-FA + lysolecithin, HS-Cys-E-Ser-O-FA in equilibrium FA-S-Cys-E-Ser-OH, FA-S-Cys-E-Ser-OH + cholesterol-OH in equilibrium HS-Cys-E-Ser-OH + cholesterol-O-FA, where FA denotes fatty acid. Modification of 2 LCAT cysteine residues with 5,5'-dithiobis-(2-nitrobenzoic acid) or treatment with ferricyanide inactivated the transacylase but not the phospholipase A2 activity. Modification of 1 serine residue with phenylmethanesulfonyl fluoride or 1 histidine residue with diethyl pyrocarbonate inhibited cholesteryl ester formation and phospholipase A2 activity. Proteoliposome substrates protected both activities against chemical inactivation. Lecithin alone protected the phospholipase A2 activity against phenylmethanesulfonyl fluoride inactivation but not the transacylase against 5,5'-dithiobis-(2-nitrobenzoic acid) inactivation. Incubation of native LCAT with arachidonyl-CoA or the lecithin-apo-A-I proteoliposome resulted in acylation of three enzyme sites, only one of which was stable to neutral hydroxylamine after denaturation. Fatty acylenzyme oxy- and thioesters were demonstrable in both cases. No transfer of arachidonic acid from iodoacetamide-modified LCAT to cholesterol occurred, indicating that the fatty-acylated serine residue cannot directly esterify cholesterol. Cholesterol arachidonate was formed upon incubation of phenylmethanesulfonyl fluoride-modified LCAT with arachidonyl-CoA.  相似文献   

4.
Ceramide is a lipid second messenger that acts on multiple-target enzymes, some of which are involved in other signal-transduction systems. We have previously demonstrated that endogenous ceramide modifies the metabolism of brain ethanolamine plasmalogens. The mechanism involved was studied. On the basis of measurements of breakdown products, specific inhibitor effects, and previous findings, we suggest that a plasmalogen-selective phospholipase A2 is the ceramide target. Arachidonate-rich pools of the diacylphosphatidylethanolamine subclass were also affected by ceramide, but the most affected were plasmalogens. Concomitantly with production of free arachidonate, increased 1-O-arachidonoyl ceramide formation was observed. Quinacrine (phospholipase A2 inhibitor) and 1-O-octadecyl-2-O-methyl-rac-glycerol-3-phosphocholine (CoA-independent transacylase inhibitor) prevented all of these ceramide-elicited effects. Therefore, phospholipase and transacylase activities are tightly coupled. Okadaic acid (phosphatase 2A inhibitor) and PD 98059 (mitogen-activated protein kinase inhibitor) modified basal levels of ceramide and sphingomyelinase-induced accumulation of ceramide, respectively. Therefore, they provided no evidence to determine whether there is a sensitive enzyme downstream of ceramide. The evidence shows that there are serine-dependent and thiol-dependent enzymes downstream of ceramide generation. Furthermore, experiments with Ac-DEVD-CMK (caspase-3 specific inhibitor) have led us to conclude that caspase-3 is downstream of ceramide in activating the brain plasmalogen-selective phospholipase A2.  相似文献   

5.
Human LCAT-like lysophospholipase (LLPL), or lysophospholipase 3, was first identified in vitro, in foam cells derived from THP-1 cells. We demonstrated that LLPL was present in foam cells in the severe atherosclerotic lesions that develop in apolipoprotein E-null (apoE(-/-)) mice. This indicated that LLPL might affect lipid metabolisms in foam cells and, therefore, atherogenesis. Accordingly, we created LLPL-knockout mice by gene targeting and crossed them with apoE(-/-) mice. We showed that the absence of LLPL increased lesion formation markedly in apoE(-/-) mice but had little effect on the plasma-lipid profile. In addition, LLPL-deficient peritoneal macrophages were more sensitive to apoptosis induced by exposure to oxidized low-density lipoprotein. LLPL might provide a link between apoptosis in macrophages and atherogenesis. Our data demonstrate that LLPL activity is anti-atherogenic and indicate that the regulation of this enzyme might be a novel drug target for the treatment of atherosclerosis.  相似文献   

6.
Phospholipase B1 (PLB1), secreted by the pathogenic yeast Cryptococcus neoformans, has an established role in virulence. Although the mechanism of its phospholipase B, lysophospholipase, and lysophospholipase transacylase activities is unknown, it possesses lipase, subtilisin protease aspartate, and phospholipase motifs containing putative catalytic residues S146, D392, and R108, respectively, conserved in fungal PLBs and essential for human cytosolic phospholipase A2 (cPLA2) catalysis. To determine the role of these residues in PLB1 catalysis, each was substituted with alanine, and the mutant cDNAs were expressed in Saccharomyces cerevisiae. The mutant PLB1s were deficient in all three enzymatic activities. As the active site structure of PLB1 is unknown, a homology model was developed, based on the X-ray structure of the cPLA2 catalytic domain. This shows that the two proteins share a closely related fold, with the three catalytic residues located in identical positions as part of a single active site, with S146 and D392 forming a catalytic dyad. The model suggests that PLB1 lacks the "lid" region which occludes the cPLA2 active site and provides a mechanism of interfacial activation. In silico substrate docking studies with cPLA2 reveal the binding mode of the lipid headgroup, confirming the catalytic dyad mechanism for the cleavage of the sn-2 ester bond within one of two separate binding tracts for the lipid acyl chains. Residues specific for binding arachidonic and palmitic acids, preferred substrates for cPLA2 and PLB1, respectively, are identified. These results provide an explanation for differences in substrate specificity between lipases sharing the cPLA2 catalytic domain fold and for the differential effect of inhibitors on PLB1 enzymatic activities.  相似文献   

7.
A transacylase that converts 1-palmitoyl lysophosphatidylcholine to dipalmitoyl phosphatidylcholine was demonstrated in the rat gastric mucosa. This enzyme required neither ATP or CoA nor bile salt and detergent for its activity. The enzyme preparation also exhibited powerful lysophospholipase activity. The transacylase and lysophospholipase were both located in the cytosol fraction, and their activities remained associated at a constant ratio throughout the purification steps, including the isoelectrofocusing procedure. They responded similarly with respect to the addition of metal ions, bile salt, detergent, and heat treatment. Both enzyme activities also exhibited similar apparent Km values for lysophosphatidylcholine. These observations suggest that both the lysophospholipase and transacylase activities may reside in the same enzyme.  相似文献   

8.
Fyrst H  Oskouian B  Kuypers FA  Saba JD 《Biochemistry》1999,38(18):5864-5871
The PLB1 gene of Saccharomyces cerevisiae encodes a protein that demonstrates phospholipase B, lysophospholipase, and transacylase activities. Several genes with significant homology to PLB1 exist in the S. cerevisiae genome, raising the possibility that other proteins may contribute to the total phospholipase B/lysophospholipase/transacylase activities of the cell. We report the isolation of a previously uncharacterized gene that is highly homologous to PLB1 and that, when overexpressed, confers resistance to 1-palmitoyllysophosphatidylcholine. This gene, which is located adjacent to the PLB1 gene on the left arm of chromosome XIII and which we refer to as PLB2, encodes a phospholipase B/lysophospholipase. Unlike PLB1, this gene product does not contain significant transacylase activity. The PLB2 gene product shows lysophospholipase activity toward lysophosphatidylcholine, lysophosphatidylserine, and lysophosphatidylethanolamine. Whereas deletion of either PLB1 or PLB2 resulted in the loss of 80% of cellular lysophospholipase activity, a plb1/plb2 double deletion mutant is completely devoid of lysophospholipase activity toward the preferred substrate lysophosphatidylcholine. Overexpression of PLB2 was associated with an increase in total cellular phospholipase B/lysophospholipase activity, as well as the appearance of significant lysophospholipase activity in the medium. Moreover, overexpression of PLB2 was associated with saturation at a higher cell density, and an increase in total cellular phospholipid content, but no change in phospholipid composition or fatty acid incorporation into cellular lipids. Deletion of PLB2 was not lethal and did not result in alteration of membrane phospholipid composition or content. PLB2 gene expression was found to be maximal during exponential growth conditions and was decreased in late phase, in a manner similar to other genes involved in phospholipid metabolism.  相似文献   

9.
The substrate specificity of a calcium-independent, 97-kDa phospholipase B purified from guinea pig intestine was further investigated using various natural and synthetic lipids. The enzyme was equally active toward enantiomeric phosphatidylcholines under conditions allowing a strict phospholipase A activity. The lysophospholipase activity declined with the following substrates: 1-acyl-sn-glycero-3-phosphocholine greater than 1-palmitoyl-propanediol-3-phosphocholine greater than 1-palmitoyl-glycol-2-phosphocholine, suggesting some influence of the polar residue vicinal to the cleavage site. The enzyme also acted on various neutral lipids including triacylglycerol, diacylglycerol, and monoacylglycerol, whereas cholesteryl oleate remained refractory to enzymatic hydrolysis. The lipase hydrolyzed sequentially the sn-2 and sn-1 acyl ester bonds of diacylglycerol, although some direct cleavage of the external acyl ester bond could also occur, as shown with diacylglycerol analogues bearing a nonhydrolyzable alkyl ether or amide bond in the sn-1 or sn-2 position. The three main activities of the enzyme (phospholipase A2, lysophospholipase, and diacylglycerol lipase) were resistant to 4-bromophenacyl bromide, but they were inhibited by N-ethylmaleimide, 5,5'-dithiobis-(2-nitrobenzoic acid), and diisopropyl fluorophosphate, suggesting the possible involvement of both cysteine and serine residues in a single active site. It is concluded that guinea pig intestinal phospholipase B, which was also detected in rat and rabbit, is actually a glycerol ester lipase with broad substrate specificity and some unique enzymatic properties.  相似文献   

10.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   

11.
The activities of phospholipids acyl-hydrolases in an enzyme preparation from a mold, Corticium centrifugum, were examined. Lecithin acyl-hydrolase had an optimal pH at 3.5. The reaction proceeded beyond the range of 50%. Sigmoidal curves observed suggested the presence of lysophospholipase in the preparation. The latter enzyme activity was found to be seven times as strong as the former at the same pH. Fractionation by DEAE-Sephadex chromatography and analysis of the reaction products demonstrated that the main component of lecithin acyl-hydrolase was phospholipase B, which hydrolyzed both of fatty acyl ester groups of lecithin. This activity was found to be present as a separate enzyme from most of lysophospholipase.  相似文献   

12.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

13.
Extracellular phospholipase (PL) activities comprising phospholipase B, lysophospholipase and lysophospholipase transacylase have been identified in culture supernatants of Cryptococcus neoformans and contribute to virulence. We found that PL production was optimal after fungal growth at 30 degrees C and secretion at 37 degrees C for all six C. neoformans isolates studied (four C. neoformans var. neoformans and two C. neoformans var. gattii). No increase in PL activity was found in one strain, NU-2, in low iron or tissue culture media, conditions where upregulation of other virulence factors has been reported. The most virulent strains in an intravenous mouse model of infection were best able to produce PL at growth and secretion temperatures of 37 degrees C, in tissue culture media and under assay conditions of pH 7.0.  相似文献   

14.
The thermoalkalophilic lipase from Bacillus thermocatenulatus BTL2 exhibits a low phospholipase activity (lecithin/tributyrin ratio 0.03). A single round of random mutagenesis of the BTL2 gene followed by screening of 6000 transformants on egg-yolk plates identified three variants with 10-12-fold increased phospholipase activities, corresponding to lecithin/tributyrin ratios of 0.16-0.36. All variants were specific for the sn-1 acyl ester bond of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Mutations occurred predominantly in the N-terminal part of BTL2 with regions surrounding the predicted helix alpha(4) and lid as hotspots. Two mutations, L184P located in the predicted helix alpha(4) and H15P found in the highly conserved oxy-anion hole motif among hydrolases, were identified to account for increased phospholipase activity. Two of the three variants showed reduced activities towards medium- and long-chain fatty acyl methyl esters compared to the wild-type enzyme. Substitution of Leu353 with Ser, which is located adjacent to the active site histidine and is important for phospholipase activity in the Staphylococcus hyicus lipase, increased the absolute phospholipase activities of the variants, but not of BTL2, approximately 2-fold. The engineered best variant displayed a lecithin/tributyrin ratio of 0.52, corresponding to a 17-fold increase compared to the wild-type enzyme. Moreover, this variant exhibited a 1.5-4-fold higher activity towards long-chain fatty acyl methyl ester (C18:1, C18:2, C18 and C20) compared to BTL2. A second round of mutagenesis and screening on lecithin-plates yielded no new variants with further increased phospholipase/lipase activity ratios, but instead one variant with a 5-fold increased expression rate and two variants with a 3-fold reduced activity towards triolein were obtained.  相似文献   

15.
An enzyme with phospholipase Al activity was purified some 500-fold from Escherichia coli cell homogenates. Lipase, phospholipase A2, and lysophospholipase copurified with phospholipase A1 and the four activities displayed similar susceptibility to heat treatment. The phospholipase A and lipase activities were recovered in a single band when partially purified preparations were subjected to SDS gel electrophoresis. Phospholipase, lysophospholipase, and lipase all required Ca2+ for activity. Phosphatidylcholine, phosphatidylethanolamine, and their lyso analogues were all hydrolysed at equivalent rates and these were substantially greater than the rate of methylpalmitate or tripalmitoylglycerol hydrolyses under similar incubation conditions. Evidence for a direct but slow hydrolysis of the ester at position 2 of phosphoglyceride was obtained; however, release of fatty acid from this position is mostly indirect involving acyl migration to position 1 and subsequent release of the translocated fatty acid. Escherichia coli, therefore, appears to possess a lipolytic enzyme of broad substrate specificity acting mainly at position 1 but also at position 2 of phosphoglycerides and on triacylglycerols and methyl fatty-acid esters.  相似文献   

16.
In the present work we investigated the effect of serine esterase inhibitors such as 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and phenylmethylsulfonyl fluoride (PMSF), as well as the effect of mepacrine on thrombin-induced mobilization of arachidonic acid (AA) in human platelets. The inhibitor NCDC (0.6 mM) completely abolished the thrombin-induced activation of phospholipase C, phospholipase A2, and transacylase enzymes, whereas the pretreatment of platelets with PMSF (2 mM) resulted in a highly selective inhibition of phospholipase A2 and transacylase activities, with no marked effect on thrombin-induced activation of phospholipase C. The thrombin-induced release of [3H]AA from phosphatidylcholine and phosphatidylinositol was reduced by 90 and 56%, respectively, in the presence of PMSF. This inhibitor also caused a parallel inhibition in the accumulation of [3H]AA (85%) with little effect on thrombin-induced formation of [3H]phosphatidic acid (5%), whereas mepacrine (0.4 mM) caused a selective inhibition of phospholipase A2 and transacylase activities with concomitant stimulation of [3H]phosphatidic acid formation in intact human platelets. These results demonstrate that NCDC and PMSF (serine esterase inhibitors) do not affect agonist-induced activation of phospholipases that mobilize arachidonic acid through a common site. Our results further demonstrate that the inhibition of [3H]AA release observed in the presence of NCDC, PMSF, and mepacrine is primarily due to their direct effects on enzyme activities, rather than due to their indirect effects through formation of complexes between inhibitors and membrane phospholipids. Based upon these results, we also conclude that the combined hydrolysis of phosphatidylcholine and phosphatidylinositol by phospholipase A2 serves as a major source for eicosanoid biosynthesis in thrombin-stimulated human platelets.  相似文献   

17.
Phospholipase A(1) (PLA(1)), which catalyzes the hydrolysis of the sn-1 ester bond of diacyl phospholipids, was purified from 100,000 x g supernatant of bonito muscle to homogeneity by ammonium-sulfate precipitation and four consecutive column chromatographies (DEAE anion-exchange, ether-Toyopeal, hydroxylapatite and Toyopeal HW 50S columns). The final preparation showed a single band above the 67-kDa molecular marker on SDS-PAGE, and the molecular mass was determined to be 71.5 kDa by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using bovine serum albumin as a standard for calibration. The N-terminal 8 amino residues were determined to be Ala-Pro-Ala-Glu-Lys-Val-Lys-Try. Regiospecificity of multiple enzyme activities of the PLA(1) was examined using positionally defined synthetic phosphatidylcholine (PC) and lysophosphatidylcholines (LPC). An acyl ester bond at the sn-1 position of PC was exclusively hydrolyzed by phospholipase activity, and 1-acyl LPC was cleaved to fatty acid and glycerophosphocholine by lysophospholipase (LPL) activity. However, the positional isomer, 2-acyl LPC was a poor substrate for LPL activity. PC/transacylation activity was also observed when excess 2-acyl LPC was supplied in the reaction mixture, and fatty acid at the sn-1 position of donor PC was transferred to the sn-1 position of acceptor LPC. These results demonstrate that the multiple enzyme activities of PLA(1), this is lysophospholipase, transacylase as well as phospholipase, have a strict regiospecificity at the sn-1 position of substrates.  相似文献   

18.
A deficiency of lysosomal phospholipase A2 (LPLA2) causes macrophage-associated phospholipidosis, suggesting that the enzyme is important in the lipid catabolism. Because LPLA2 is secreted by macrophages, extracellular LPLA2 activity may potentially reflect a change in macrophage activation. In this report, the detection of LPLA2 activity in plasma was established by the measurement of the transacylase activity of LPLA2 under acidic conditions. No transacylase activity of LPLA2 was detected in normal human plasma when the plasma was incubated with liposomes consisting of 1,2-dioleoylphosphatidylcholine/sulfatide/N-acetylsphingosine (NAS) at pH 4.5. However, the transacylase activity in the plasma was detected when liposomes consisting of 1,2-dioleoylphosphatidylglycerol/NAS were used as a substrate. To establish the specificity of the assay, ceramide transacylase activity was detected in the plasma of wild-type mice. By contrast, the plasma obtained from LPLA2-knockout mice had no measurable transacylase activity under the same conditions. The enzymatic activity of recombinant LPLA2 was inhibited by treatment with methylarachidonylfluorophosphonate. The inhibitor also suppressed the transacylase activity observed in both normal human and wild-type mouse plasma, establishing that the transacylase activity observed in plasma is due to LPLA2. Plasma LPLA2 activity may be a useful bioassay marker for the identification of LPLA2-related disorders.  相似文献   

19.
The Group IV phospholipase A2 family is comprised of six intracellular enzymes commonly called cytosolic phospholipase A2 (cPLA2) , cPLA2β, cPLA2γ, cPLA2δ, cPLA2ε and cPLA2ζ. They are most homologous to phospholipase A and phospholipase B/lysophospholipases of filamentous fungi particularly in regions containing conserved residues involved in catalysis. However, a number of other serine acylhydrolases (patatin, Group VI PLA2s, Pseudomonas aeruginosa ExoU and NTE) contain the Ser/Asp catalytic dyad characteristic of Group IV PLA2s, and recent structural analysis of patatin has confirmed its structural similarity to cPLA2. A characteristic of all these serine acylhydrolases is their ability to carry out multiple reactions to varying degrees (PLA2, PLA1, lysophospholipase and transacylase activities). cPLA2, the most extensively studied Group IV PLA2, is widely expressed in mammalian cells and mediates the production of functionally diverse lipid products in response to extracellular stimuli. It has PLA2 and lysophospholipase activities and is the only PLA2 that has specificity for phospholipid substrates containing arachidonic acid. Because of its role in initiating agonist-induced release of arachidonic acid for the production of eicosanoids, cPLA2 activation is important in regulating normal and pathological processes in a variety of tissues. Current information available about the biochemical properties and tissue distribution of other Group IV PLA2s suggests they may have distinct mechanisms of regulation and functional roles.  相似文献   

20.
Fifty-eight tryptic and Staphylococcus aureus V8 protease generated peptides from bovine dopamine beta-hydroxylase were isolated by reverse-phase high pressure liquid chromatography and sequenced. These peptide sequences were compared with the deduced amino acid sequences of bovine and human dopamine beta-hydroxylase obtained from the cloned cDNAs. Bovine peptide sequences had five differences with the sequence derived from the bovine cDNA, and four of the changes could be accounted for by a single base change in the DNA. N-terminal sequence analysis of the bovine enzyme indicated that it contained two N termini, one of which is 3 amino acids longer than the other and begins with the sequence Ser-Ala-Pro. The amino acid sequences deduced from the bovine and human cDNAs are 19 and 25 amino acids longer, respectively, and these additional amino acids represent leader peptide sequences. Two bovine peptide sequences contained glycosylation sites and gave positive tests for carbohydrate residues, and two others contained the consensus sequence for a glycosylation site but were negative in the carbohydrate test. The bovine enzyme contains 6 Trp, as compared with 7 in the bovine cDNA and 8 in the human cDNA. The protein and bovine cDNA contain 24 Tyr each, as compared with 26 in the human cDNA. These numbers indicate that the true epsilon 1% 280 = 8.95, and, therefore, that it is 28% lower than the previously determined value. The data also identify 5 His-containing regions that may be involved in Cu2+ coordination at the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号