首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
In high inorganic carbon grown (1% CO2 [volume/volume]) cells of the cyanobacterium Synechococcus PCC7942, the carbonic anhydrase (CA) inhibitor, ethoxyzolamide (EZ), was found to inhibit the rate of CO2 uptake and to reduce the final internal inorganic carbon (Ci) pool size reached. The relationship between CO2 fixation rate and internal Ci concentration in high Ci grown cells was little affected by EZ. This suggests that in intact cells internal CA activity was unaffected by EZ. High Ci grown cells readily took up CO2 but had little or no capacity for HCO3 uptake. These cells appear to possess a CO2 utilizing Ci pump that has a CA-like function associated with the transport step such that HCO3 is the species delivered to the cell interior. This CA-like step may be the site of inhibition by EZ. Low Ci grown cells possess both CO2 uptake and HCO3 uptake activities and EZ inhibited both activities to a similar degree, suggesting that a common step in CO2 and HCO3 uptake (such as the Ci pump) may have been affected. The inhibitor had no apparent effect on internal CO2/HCO3 equilibria (internal CA function) in low Ci grown cells.  相似文献   

2.
Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3? transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full‐length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss‐of‐function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.  相似文献   

3.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

4.
Chlamydomonas reinhardtii can grow photosynthetically using CO2 or in the dark using acetate as the carbon source. In the light in air, the CO2 concentrating mechanism (CCM) of C. reinhardtii accumulates CO2, enhancing photosynthesis. A combination of carbonic anhydrases (CAs) and bicarbonate transporters in the CCM of C. reinhardtii increases the CO2 concentration at Ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) in the chloroplast pyrenoid. Previously, CAs important to the CCM have been found in the periplasmic space, surrounding the pyrenoid and inside the thylakoid lumen. Two almost identical mitochondrial CAs, CAH4 and CAH5, are also highly expressed when the CCM is made, but their role in the CCM is not understood. Here, we adopted an RNAi approach to reduce the expression of CAH4 and CAH5 to study their possible physiological functions. RNAi mutants with low expression of CAH4 and CAH5 had impaired rates of photosynthesis under ambient levels of CO2 (0.04% CO2 [v/v] in air). These strains were not able to grow at very low CO2 (<0.02% CO2 [v/v] in air), and their ability to accumulate inorganic carbon (Ci = CO2 + HCO3) was reduced. At low CO2 concentrations, the CCM is needed to both deliver Ci to Rubisco and to minimize the leak of CO2 generated by respiration and photorespiration. We hypothesize that CAH4 and CAH5 in the mitochondria convert the CO2 released from respiration and photorespiration as well as the CO2 leaked from the chloroplast to HCO3- thus “recapturing” this potentially lost CO2.

Mitochondrial carbonic anhydrases CAH4 and CAH5 in Chlamydomonas reinhardtii are involved in maintaining optimal photosynthesis.  相似文献   

5.
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5–5% CO2), a low CO2 (0.03–0.4% CO2) and a very low CO2 (< 0.02% CO2) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3 uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci, HCO3 or CO2, that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2 is minimal.  相似文献   

6.
The nature of the inorganic carbon (Ci) species actively taken up by cyanobacteria CO2 or HCO3 has been investigated. The kinetics of CO2 uptake, as well as that of HCO3 uptake, indicated the involvement of a saturable process. The apparent affinity of the uptake mechanism for CO2 was higher than that for HCO3. Though the calculated Vmax was the same in both cases, the maximum rate of uptake actually observed was higher when HCO3 was supplied. Ci uptake was far more sensitive to the carbonic anhydrase inhibitor ethoxyzolamide when CO2 was the species supplied. Observations of photosynthetic rate as a function of intracellular Ci level (following supply of CO2 or HCO3 for 5 seconds) led to the inference that HCO3 is the species which arrives at the inner membrane surface, regardless of the species supplied. When the two species were supplied simultaneously, mutual inhibition of uptake was observed.

On the basis of these and other results, a model is proposed postulating that a carboic anhydrase-like subunit of the Ci transport apparatus binds CO2 and releases HCO3 at or near a membrane porter. The latter transports HCO3 ions to the cell interior.

  相似文献   

7.
The inorganic carbon (Ci) accumulation and the intracellular location of carbonic anhydrase (CA, EC 4.2.1.1) in the halotolerant unicellular alga Dunaliella salina have been investigated. The rate of HCO3 -dependent O2 evolution was determined by growth conditions. Algae grown under high CO2 conditions (5% CO2 in air, v/v; high Ci cells) had a very low affinity for HCO3? at pH 7.0 and 8.2, whereas algae grown under low CO2 conditions (0.03% CO2 in air; low Ci cells) showed a high affinity for HCO3? at both pH values and were sensitive to Dextran-bound sulfonamide (DBS), an inhibitor of extracellular CA. The photosynthetic rate or HCO4? dependent O2 evolution was always higher at pH 7.0 than at pH 8.2. Ethoxyzolamide (EZ), an inhibitor of total (extacellular plus intracellular) CA activity, strongly inhibited photosynthesis at both pH values. During adaptation from high to low CO2 conditions CA activity increased in chloroplasts in a process dependent on the novo protein synthesis. Carbonic anhydrase activity was found in the supernatant and pellet fractions of chloroplast homogenates. The rate of photosynthesis of chloroplasts from low Ci cells was higher at pH 7.0 than at pH 8.2. The alkalinization of the growth medium, which took place only in the presence of Ci, was partially inhibited by DBS and completely by EZ. We suggest that in D. salina CO2 is the general form of Ci transported across the plasma membrane and the chloroplast envelope and that bicarbonate enters the cell mainly, although not entirely, by an ‘indirect’ mechanism after dehydration to CO2.  相似文献   

8.
The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3 ? interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.  相似文献   

9.
The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 ?, the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed.  相似文献   

10.
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3 uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 μatm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 μatm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.  相似文献   

11.
Light-dependent inorganic C (Ci) transport and accumulation in air-grown cells of Synechococcus UTEX 625 were examined with a mass spectrometer in the presence of inhibitors or artificial electron acceptors of photosynthesis in an attempt to drive CO2 or HCO3 uptake separately by the cyclic or linear electron transport chains. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the cells were able to accumulate an intracellular Ci pool of 20 mm, even though CO2 fixation was completely inhibited, indicating that cyclic electron flow was involved in the Ci-concentrating mechanism. When 200 μm N,N-dimethyl-p-nitrosoaniline was used to drain electrons from ferredoxin, a similar Ci accumulation was observed, suggesting that linear electron flow could support the transport of Ci. When carbonic anhydrase was not present, initial CO2 uptake was greatly reduced and the extracellular [CO2] eventually increased to a level higher than equilibrium, strongly suggesting that CO2 transport was inhibited and that Ci accumulation was the result of active HCO3 transport. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated cells, Ci transport and accumulation were inhibited by inhibitors of CO2 transport, such as COS and Na2S, whereas Li+, an HCO3-transport inhibitor, had little effect. In the presence of N,N-dimethyl-p-nitrosoaniline, Ci transport and accumulation were not inhibited by COS and Na2S but were inhibited by Li+. These results suggest that CO2 transport is supported by cyclic electron transport and that HCO3 transport is supported by linear electron transport.  相似文献   

12.
The capacity for HCO3 use by Porphyra leucosticta Thur. in Le Jolis grown at different concentrations of inorganic carbon (Ci) was investigated. The use of HCO3 at alkaline pH by P. leucosticta was␣demonstrated by comparing the O2 evolution rates measured with the O2 evolution rates theoretically supported by the CO2 spontaneously formed from HCO3 . Both external and internal carbonic anhydrase (CA; EC 4.2.1.1) were implied in HCO3 use during photosynthesis because O2 evolution rates and the increasing pH during photosynthesis were inhibited in the presence of azetazolamide and ethoxyzolamide (inhibitors for external and total CA respectively). Both external and internal CA were regulated by the Ci level at which the algae were grown. A high Ci level produced a reduction in total CA activity and a low Ci level produced an increase in total CA activity. In contrast, external CA was increased at low Ci although it was not affected at high Ci . Parallel to the reduction in total CA activity at high Ci is a reduction in the affinity for Ci, as estimated from photosynthesis versus Ci curves, was found. However, there was no evident relationship between external CA activity and the capacity for HCO3 use because the presence of external CA became redundant when P. leucosticta was cultivated at high Ci. Our results suggest that the system for HCO3 use in P. leucosticta is composed of different elements that can be activated or inactivated separately. Two complementary hypotheses are postulated: (i) internal CA is an absolute requirement for a functioning Ci-accumulation mechanism; (ii) there is a CO2 transporter that works in association with external CA. Received: 20 April 1996 / Accepted: 5 August 1996  相似文献   

13.
The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3 and low CO2 concentration, suggesting its participation in the dehydration of HCO3 to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3 was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3 catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus.  相似文献   

14.
Ogawa T  Kaplan A 《Plant physiology》1987,83(4):888-891
The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3 produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3 in the medium, with the concentration of HCO3 being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3 occurs during uptake of Ci.  相似文献   

15.
Some physiological characteristics of photosynthetic inorganic carbon uptake have been examined in the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Both species demonstrated a high affinity for inorganic carbon in photosynthesis at pH7.5, having K1/2(CO2) in the range 1.0 to 4.0mmol m?3 and O2? and temperature-insensitive CO2 compensation concentrations in the range 10.8 to 17.6 cm3 m?3. Intracellular accumulation of inorganic carbon was found to occur in the light; at an external pH of 7.5 the concentration in P. tricornutum was twice, and that in Cyclotella 3.5 times, the concentration in the suspending medium. Carbonic anhydrase (CA) was detected in intact Cyclotella cells but not in P. tricornutum, although internal CA was detected in both species. The rates of photosynthesis at pH 8.0 of P. tricornutum cells and Cyclotella cells treated with 0.1 mol m?3 acetazolamide, a CA inhibitor, were 1.5- to 5-fold the rate of CO2 supply, indicating that both species have the capacity to take up HCO3? as a source of substrate for photosynthesis. No Na+ dependence for HCO3? could be detected in either species. These results indicate that these two marine diatoms have the capacity to accumulate inorganic carbon in the light as a consequence, in part, of the active uptake of bicarbonate.  相似文献   

16.
Cyanobacterial cells accumulate substantial amounts of a membrane-associated 42 kilodalton polypeptide during adaptation to low CO2 conditions. The role of this polypeptide in the process of adaptation and in particular in the large increase in the ability to accumulate inorganic carbon (Ci), which accompanies this process, is not yet understood. We have isolated a mutant Synechococcus PCC7942 that does not accumulate the 42 kilodalton polypeptide. The mutant requires a high-CO2 concentration for growth and exhibits a very low apparent photosynthetic affinity for extracellular Ci. The latter might be attributable to the observed defective ability of the mutant to utilize the intracellular Ci pool for photosynthesis. The 42 kilodalton polypeptide does not appear to participate directly in the active transport of Ci, since the difference between the observed capabilities for CO2 and HCO3 uptake of the mutant and the wild type is not sufficient to account for their different growth and photosynthetic performance. Furthermore, high CO2-grown wild-type cells, where we could not detect the 42 kilodalton polypeptide, transported CO2 faster than the mutant. An analysis of the curves relating the rate of accumulation of Ci to the concentration of CO2 or HCO3 supplied, in the presence or absence of carbonic anhydrase, indicated that under the experimental conditions used here, CO2 was the preferred Ci species taken up by Synechococcus.  相似文献   

17.
Bicarbonate uptake by isolated chloroplast envelope membranes and intact chloroplasts of spinach (Spinacia oleracea L. var. Viroflay) in darkness exhibited a similar dependency upon temperature, pH, time, and concentrations of isolated or attached envelope membranes. This similarity in uptake properties demonstrates the usefulness of the envelope membranes for the study of chloroplast permeability. Maximal rates for dark HCO3- uptake by isolated envelope membranes and intact chloroplasts were more than sufficient to account for the maximal rates of photosynthetic CO2 fixation observed with intact chloroplasts. The active species involved in the uptake process was found to be HCO3- and not CO2. The significance of HCO3- uptake and its relationship to carbonic anhydrase and ribulose diphosphate carboxylase is discussed. Conditions for maximal HCO3- uptake in darkness by intact chloroplasts were found to be similar to those required for maximal photosynthetic CO2 fixation, suggesting that HCO3- uptake by the envelope membrane may regulate photosynthetic CO2 fixation.  相似文献   

18.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

19.
Ogawa T 《Plant physiology》1990,94(2):760-765
Eighty mutants of Synechocystis PCC6803 that require high CO2 for growth were examined with a mass spectrometer for their ability to take up CO2 in the light. Two of these mutants (type A) did not show any CO2 uptake while the rest of the mutants (type B) took up CO2 actively. Type A mutants (RKa and RKb) and one type B mutant (RK11) were partially characterized. At 3% CO2, growth rates of the mutants and the wild type (WT) were similar. Under air levels of CO2, growth of RKa and RKb was very slow, and RK11 did not grow at all. The photosynthetic affinities for inorganic carbon (Ci) in these three mutants were about 100 times lower than the affinity in WT. The following characteristics of type A mutants indicated that the mutants have a defect in their CO2-transport system: (a) the activity of 13C18O2 uptake in RKa and RKb in the light was less than 5% the activity in WT, and (b) each mutant had only a low level of activity of 14CO2 uptake as measured by the method of silicone oil-filtering centrifugation. The HCO3-transport system was also impaired in these mutants. The activity of H14CO3 uptake was negligibly low in RKb and was one-third the activity of WT in RKa. On the other hand, the type B mutant, RK11, transported CO2 and HCO3 into the intracellular Ci pool as actively as WT but was unable to utilize it for photosynthesis. Complementation analysis of type A mutants indicated that RKa and RKb have mutations in different regions of the genome. These results suggested that at least two kinds of proteins are involved in the Ci-transport system.  相似文献   

20.
Influx and efflux of inorganic carbon in Synechococcus UTEX625   总被引:1,自引:0,他引:1  
The CO2 and HCO3? fluxes in air-grown cells of Synechococcus UTEX 625 al pH 8-0 were measured during dark to light and light to dark transitions using a mass spectrometer and sampling of the reaction medium. The kinetic parameters for initial uptake of CO2 and HCO3? were determined during the initial period of illumination. The development of the internal Ci pool was followed up to steady-state photosynthesis, which occurred when the size of the internal inorganic carbon pool remained apparently constant for a limited period. The experimental procedure confirmed that only CO2 transport occurred with 100mmolm?3 Na+ and that both CO2 and HCO?3 transport occurred with 25molm?3 Na+. The K1/2 values of initial CO2 and HCO3 uptake were 0.7 and 17.2 mmolm?3respectively and agreed closely with the K1/2 values of net CO2 and HCO3? transport during steady-state photosynthesis, which were 0.66 and 17.1 mmolm?3 respectively. Maximum rates of CO2and HCO3? transport were 423 and 219mmolh?1 g?1 Chl. Maximum CO2 efflux observed upon darkening was 118mmolh?1 g?1 Chl. A permeability coefficient of the cell for CO2 of 3 × 10?8 m s?1 was determined from the dark CO2 efflux assuming an internal pH of 7.2 in the dark. Following the initial CO2 uptake in the light, the extracellular [CO2] steadily declined when only CO2 transport was allowed, but an increase in the extracellular [CO2] when HCO3? transport was allowed to proceed suggested that an enhanced CO2 efflux occurred as a result of the larger size of the intracellular Ci pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号