首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A protocol for regenerating and subsequent in vitro flowering of an economical important and endangered medicinal orchid, Dendrobium huoshanense, was established mainly via indirect protocorm-like body (PLB) formation. A four-step method was developed to induce successful plant regeneration on 1/2 MS medium supplemented with suitable plant growth regulators (PGRs). Step 1 (callus induction): the root tip explants (1 cm long) were cultured at 1 mg l?1 2,4-D + 1 mg l?1 TDZ for 3 months. Step 2 (callus proliferation): the calli were subcultured with a 1-month interval at 1 mg l?1 2,4-D + 1 mg l?1 TDZ. Step 3 (PLB induction): the calli were cultured at 2 mg l?1 NAA + 1 mg l?1 BA for 2 months. Step 4 (plantlet conversion): the 2-month-old PLBs were cultured at 0.1 mg l?1 IBA for 4 months. It took at least 6 months to produce well-rooted regenerated plantlets with an average of 3.2 roots and 3.6 leaves from the initial callus. The 6-month-old rooted plantlets were transferred onto PGR-free 1/2 MS medium for 6 months, and then potted with Sphagnum moss for acclimatization. After 2 month of culture, the survival rate was 100 %. The in vitro flowers were obtained on the 8-month-old plantlets at 1 mg l?1 IBA, 5 mg l?1 IBA and 0.1 mg l?1 NAA, but the flowers showed a lack of the gynandrium. The abnormity was overcome by the aid of 5 mg l?1 TDZ, and subsequently, the capsules formed without artificial pollination. This protocol provides the basis for further investigation on cell suspension, micropropagation, in vitro flowering and breeding programs in Dendrobium huoshanense.  相似文献   

2.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

3.
The present study reports, for the first time, an efficient in vitro plant regeneration protocol for Digitalis ferruginea subsp. ferruginea L. (rusty foxglove). We have used different concentrations of gibberellic acid (GA3) on Murashige and Skoog (MS) medium to assess the germination frequency of seeds. High frequency of germination was achieved on MS medium with 1.0 mg l?1 GA3. 6-Benzylaminopurine (BAP) combined with α-naphtaleneacetic acid (NAA) or 2, 4-dichlorophenoxy acetic acid (2, 4-D) in the induction MS medium induced both somatic embryogensis and shoot organogenesis. The highest percentage of callus growth (85 %) was obtained when hypocotyl explants were cultured on MS medium containing 0.5 mg l?1 2, 4-D plus 1.0 mg l?1 BAP. The maximum mean number of somatic embryos (7.3 ± 1.3 embryos) or shoots (12.0 ± 1.1 shoots) per callus was obtained when medium contained 0.25 mg l?1 NAA plus 1.0 mg l?1 BAP or 0.5 mg l?1 NAA plus 2.0 mg l?1 BAP. The regenerated shoots easily rooted on MS medium. Higher amounts of lanatoside C [13.2 ± 0.5 mg 100 g?1 dry weight (dw)] and digoxin (2.93 ± 0.31 mg 100 g?1 dw) accumulation were obtained when shoots were obtained by indirect regeneration. We also investigated derivatives of cardenolides, i.e., digitoxigenin (730 ± 180 mg 100 g?1 dw), gitoxigenin (50 ± 20 mg 100 g?1 dw) and digoxigenin (490 ± 170 mg 100 g?1 dw) from natural samples.  相似文献   

4.
An efficient regeneration protocol for Sarcostemma acidum – an important medicinal plant has been established. Callus initiated from nodal explant on MS medium with 2.0 mg?L?1 of NAA + additives. Callus initiated was subcultured on MS medium containing various concentrations of NAA or 2,4-D. Out of these combinations, MS medium +1.0 mg?L?1 of NAA + additives was found to be effective for the multiplication of callus. Subculture was done after an interval of 20–22 days. For differentiation of callus BAP or Kinetin alone was found to be less effective. Maximum frequency of shoot regeneration recorded on MS medium +1.0 mg?L?1 of BAP?+?0.5 mg?L?1 of Kinetin and 0.1 mg?L?1 of NAA + additives. The in vitro differentiated shoots were excised and inoculated on 1/4 strength MS medium +2.0 mg?L?1 of IBA?+?0.02 % activated charcoal for in vitro rooting. Maximum response (90 %) was recorded on this medium. In vitro differentiated shoots were inoculated on autoclaved soilrite® after treatment with root inducing auxins. Ex vitro rooting in this plant species has been reported for the first time. Eighty five percent of the shoots rooted under ex vitro conditions. Both in vitro and ex vitro rooted plantlets were hardened in a green house.  相似文献   

5.
Ephedra foliata, (Gymnosperm) is a pharmaceutically important plant known for the last 5,000 years and has a number of medicinal properties. We describe here for the first time, a method for plant regeneration from callus established from axillary buds as explant, with the aim of optimizing alkaloids production in vitro. The tissue cultures initiated are being maintained for the last 3 years on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium containing 0.5 mg l?1 each of 2, 4-D and Kin. Maintained callus cultures exhibited regeneration potential and maximum number (23.5 ± 0.44 shoots per culture vessel) of shoots with an average height (4.94 ± 0.23 cm) was achieved on MS medium containing combination of 0.25 mg l?1 each of Kin, BA and 0.1 mg l?1 of NAA. About 84.9 % regenerated shoots were rooted under ex vitro conditions on Soilrite®, if their base was treated with 500 mg l?1 of IBA for 5 min. The rooted plantlets were successfully acclimatized under greenhouse conditions with ≈80 % survival rate. We analyzed alkaloid contents of tissue culture raised plants/callus as affected by the different concentrations and combination of two additives, i.e., l-phenylalanine and IBA. The alkaloid production was higher in the in vitro grown cultures than field-grown plants. Highest alkaloid content was recorded in callus culture on M5 medium having 0.5 mg l?1 each of 2, 4-D and Kin, 100 mg l?1 l-phenylalanine and 5 mg l?1 IBA. The present protocol may be applicable for the large-scale cultivation of E. foliata and selection of cell line having higher secondary metabolite contents of this pharmaceutically important threatened plant species.  相似文献   

6.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

7.
In vitro propagation methods using seeds and nodal segments of a 21-year old Couroupita guianensis - a medicinally important but threatened tree have been developed. Hundred percent of the seeds germinated on half strength Murashige and Skoog (MS) medium with 2.0 mg l?1 indole-3 butyric acid (IBA). Nodal segments were found most suitable for the establishment of cultures. About 90 % explants responded and 4.1 ± 0.23 shoots per node were induced after five weeks of inoculation on MS medium +4.0 mg l?1 6-benzylaminopurine (BAP). Further shoot multiplication was achieved by repeated transfer of mother explants and subculturing of in vitro produced shoots on fresh medium. Maximum number (8.2 ± 0.17) of shoots were regenerated on MS medium with 1.0 mg l?1 each of BAP and Kinetin (Kin) + 0.5 mg l?1 α-naphthalene acetic acid (NAA) with additives (50 mg l?1 of ascorbic acid and 25 mg l?1 each of adenine sulphate, L-arginine and citric acid). The multiplied shoots rooted (4.3 ± 0.26 roots/shoot) on half strength MS medium with 2.5 mg l?1 IBA. All the shoots were rooted ex vitro when pulse treated with 400 mg l?1 of IBA for five min with an average of 7.3 ± 0.23 roots per shoot. Nearly 86 % of these plantlets were acclimatized within 7–8 weeks and successfully transferred in the field. Biologically significant developmental changes were observed during acclimation particularly in leaf micromorphology in terms of changes in stomata, veins and vein-islets, and trichomes. This study helps in understanding the response by the plants towards outer environmental conditions during acclimatization. This is the first report on micropropagation of C. guianensis, which could be used for the large-scale multiplication, restoration and conservation of germplasm of this threatened and medicinally important tree.  相似文献   

8.
An efficient method of Coelogyne cristata mass propagation was developed using segment of protocorm-like bodies (PLBs) (3 mm2 in size). It was observed that ½ MS medium showed to be more effective to induce shoots through PLBs segment. The explants when cultured on ½ MS media containing TDZ and CP showed relatively superior effect on shoot regeneration as compared to the media containing TDZ alone or in combination with BP. Addition of BP and CP to the medium containing NAA and BA combinations proved distinctly better for shoot multiplication than that of the medium with NAA and BA combinations alone. The highest percentage of explants producing shoots, with a maximum average of 8.1 per explant, was induced on the medium supplemented with 1.0 mg l?1 NAA and 0.5 mg l?1 BA with CP. Shoots produced an average of 15 roots per explant on ½ MS medium supplemented with 2.0 mg l?1 IBA and BP. The 4 cm height plantlets with well-developed roots were successfully acclimatized. The results suggest that CP and BP can be used effectively to initiate shooting and rooting of Coelogyne cristata. Ploidy analysis of regenerated plants using flow cytometry revealed the same ploidy level (diploid). This efficient and reliable protocol could be useful for mass multiplication and germplasm conservation of the wild medicinal orchid.  相似文献   

9.
Multiple shoots were regenerated in MS medium using different concentrations of BAP and Kn and different combinations of BAP with IAA, NAA and IBA. Highest multiplication of shoots was obtained with BAP (0.75 mg l?1) with 28.4 shoots per explant after 60 days of culture. Shoots rooted best on IBA (0.5 mg l?1), numbering 48.8 per explant. Organogenesis was maximum in callus cultured on MS medium supplemented with BAP (2.0 mg l?1) and IAA (1.0 mg l?1).  相似文献   

10.
An efficient somatic embryogenesis and regeneration system was developed for the first time in onion using shoot apex explants. These explants were used to initiate callus in Murashige and Skoog (MS) medium supplemented with 4.0 mg l?1 2,4-dichlorophenoxyacetic acid. The induction frequency of primary callus in this medium was 85.3%. The primary calli were then transferred onto medium supplemented with 2.0 mg l?1 2,4-dichlorophenoxyacetic acid. Following two biweekly subcultures, embryogenic callus formed. Inclusion of a low concentration of 6-benzylaminopurine in the subculture medium promoted the formation of embryogenic callus. The addition of 2.0 mg l?1 glycine, 690 mg l?1 proline, and 1.0 g l?1 casein hydrolysate also increased the frequency of callus induction and embryogenic callus formation. The highest frequency of embryogenic callus (86.9%) and greatest number of somatic embryos (26.3 per callus) were obtained by the further addition of 8.0 mg l?1 silver nitrate. Somatic embryos formed plantlets on regeneration medium supplemented with 1.5 mg l?1 6-benzylaminopurine; addition of 2.0 mg l?1 glycine to the regeneration medium promoted a high frequency of regeneration (78.1%) and plantlet formation (28.7 plants per callus). The regenerated plantlets were transferred to half-strength MS medium supplemented with 1.5 mg l?1 indole-3-butyric acid for root development; the maximum frequency of root formation was 87.7% and the average number of roots was 7.6 per shoot. The regenerated plantlets were successfully grown to maturity after hardening in the soil. This is the first report of somatic embryogenesis and regeneration from shoot apex explants of onion.  相似文献   

11.
Jatropha curcas L. is attaining worldwide interest as an important biofuel crop. Experiments were conducted to improve the prevailing micropropagation technique as well as to develop a new ex vitro rooting method for J. curcas plant regeneration. Regeneration and ex vitro rooting efficiency was enhanced by augmenting the culture medium with abscisic acid (ABA). Different concentrations of 6-benzylaminopurine (BAP) and indole-3-butyric acid (IBA) were tested for callus generation from both in vitro and in vivo explants (leaf and petiole) on Murashige and Skoog (MS) medium. The best regenerative callus was achieved on MS medium supplemented with BAP (4.44 μM) and IBA (2.45 μM) from in vitro-cultured petioles. Highest regeneration (91%) was achieved by culturing petiole callus on MS medium supplemented with BAP (8.88 μM), IBA (0.49 μM), and ABA (1.9 μM), whereas 61% regeneration was obtained from in vitro leaf callus. Shoot proliferation and elongation was achieved on BAP (2.22 μM) and IAA (8.56 μM) with 10–13 shoots per explants. Highest rooting (65%) was achieved from M1 shoots (BAP, IAA, and ABA) on MS medium supplemented with IBA (2.45 μM), naphthaleneacetic acid NAA (0.54 μM), and 0.02% activated charcoal. Ex vitro rooting of 1-mo-old M1 shoots obtained from the charcoal-containing medium resulted optimum rooting (>72%) when transferred to polybags containing sterile sand. The plantlets were successfully acclimatized in soil with more than 98% survival rate in the greenhouse.  相似文献   

12.
Ceropegias has acquired significant importance due to their medicinal properties, edible tubers, and its ornamental flowers. The aim of this study was to optimize direct shoot organogenesis (DSO), indirect shoot organogenesis (ISO) and plant regeneration of threatened medicinal plant Ceropegia santapaui, followed by analysis of genetic status and biochemical characterization of micropropagated plantlets. For optimization, cotyledonary nodes and cotyledons were used as source of explants in DSO and ISO respectively. The highest frequency of regeneration (88.0 %) for DSO with 8.1 ± 0.6 shoots per explant was obtained from cotyledonary nodes cultured on Murashige and Skoog’s (MS) medium containing 2.0 mg L?1 2iP. The best response for callus induction and proliferation was achieved with 1.5 mg L?1 PR (picloram) in which 97.5 % of cultures produced an average of 913 ± 10.9 mg (fresh weight) of callus. The highest frequency of shoot formation (92.5 %) with an average of 19.7 ± 0.3 shoots in ISO was obtained when calli were transferred to MS medium supplemented with 2.5 mg L?1 BAP and 0.4 mg L?1 IBA. Regenerated shoots were best rooted in half-strength MS medium with 2.0 mg L?1 NAA. Plantlets successfully acclimatized were morphologically indistinguishable from the source plant. Micropropagated plantlets subjected to random amplified polymorphic DNA and inter simple sequence repeats (ISSR) marker based profiling reveled uniform banding pattern in DSO-derived plantlets which was similar to mother plant. ISSR fingerprints of ISO-derived plants showed low variation. Method of regeneration, plant part and solvent system significantly affected the levels of total phenolics, flavonoids and antioxidant capacity. Assay of antioxidant activity of different tissues revealed that significantly higher antioxidant activity was observed in ISO-derived tissues than DSO-derived and mother tissues. RP-HPLC analysis of micropropagated plantlets showed the presence of three major phenolic compounds which were similar to those detected in mother plant. Rapid multiplication rate, genetic stability and biochemical parameter ensures the efficacy of the protocol developed for the propagation of this threatened medicinal plant.  相似文献   

13.
An improved micropropagation method has been developed for Salvadora oleoides, a valuable tree species of alkaline and arid regions. Nodal explant obtained from a mature tree (30- to 35-year-old) responded optimally (80.0 %) on BAP (2.0 mg l?1) and produced (4.56 ± 0.52) shoots. Shoots were further multiplied by subculturing the in vitro excised shoots and transferring them to MS medium containing either BAP (0.0–2.0 mg l?1) alone or in combination with lower concentrations of an auxin (IAA or NAA 0.05–0.4 mg l?1). Among all the PGRs combination tested, MS medium supplemented with BAP (0.5 mg l?1) and IAA (0.1 mg l?1) formed the maximum number of shoots (68.40 ± 2.74 per culture bottle) with an average height (6.59 ± 0.30 cm), after 6 weeks of culture. Rooting in regenerated shoots was achieved by ex vitro methods and about 92.5 % of shoots were rooted with 5.25 ± 0.64 roots per shoot and an average length of 2.76 ± 0.53 cm after 3 weeks of incubation in the green house. More than (80 %) of hardened plantlets survived in the field conditions. Genetic stability of the discussed protocol was confirmed by two DNA-based fingerprinting techniques i.e. RAPD and ISSR. Of the 10 RAPD primers finally selected, a total of 42 bands (out of 43) were monomorphic and one polymorphic, whereas from 10 ISSR primers selected, all the 43 bands were monomorphic revealing a high level of genetic homogeneity in the regenerated plants and the donor plant. In the present investigation, we achieved significantly more number of shoots during multiplication, which are higher than all previous reports and further evaluated the genetic fidelity of protocol for the first time in S. oleoides, which concludes the clonal (true-to-type) nature of micropropagated plantlets.  相似文献   

14.
Root, hypocotyl and cotyledonary explants of niger (Guizotia abyssinica Cass) CV. Sahyadri were aseptically cultured on Murashige and Skoog's basal medium (MS) containing BAP and kinetin. Multiple shoot regeneration was induced from hypocotyl and cotyledonary explants while root explants produced only callus on MS medium supplemented with BAP. BAP (1 mg l-1) was optimum for shoot regeneration. Regenerated shoots were transferred to MS medium without auxins, with auxins and with increasing concentrations of sucrose for rooting. Complete plantlets were obtained in all cases; however, 0.5 mg l-1 NAA was the best for induction of roots. Ninety-seven per cent of the plantlets survived and completed their life cycle when transferred to natural conditions.Abbreviations BAP 6-benzylamino purine - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid  相似文献   

15.
Airlift bioreactors were programmed for continuous and temporary immersion culture to investigate factors that affect the rhizome proliferation, shoot formation, and plantlet regeneration of Cymbidium sinense. During rhizome proliferation, the continuous immersion bioreactor system was used to explore the effects of activated charcoal (AC) in the culture medium, inoculation density, and air volume on rhizome differentiation and growth. The optimum conditions for obtaining massive health rhizomes were 0.3 g l?1 AC in the culture medium, 7.5 g l?1 inoculation density, and 150 ml min?1 air. In addition, the temporary immersion bioreactor system was used for both shoot formation and plantlet regeneration. Supplementing 4 mg l?1 6-benzylaminopurine and 0.2 mg l?1 naphthalene acetic acid (NAA) to the culture medium promoted shoot induction from the rhizome. Cutting the rhizome explants into 1 cm segments was better for massive shoot formation than cutting into 0.25 and 0.5 cm explant segments. NAA promoted plantlet regeneration and the rooting rate (94.7 %), with whole plantlets growing well in culture medium containing 1.0 mg l?1 NAA. Therefore, applying bioreactors in C. sinense micropropagation is an efficient way for scaling up the production of propagules and whole plantlets for the industrial production of high-quality seedlings.  相似文献   

16.
Asparagus macrorrhizus: is a new species, which has been recently described. It is limited to the area surrounding the “Mar Menor” lagoon, in Murcia (Spain), and is the only “Critically Endangered” species of the genus Asparagus. Despite being protected, the number of plants has decreased in the last years due to the urbanization of its natural habitat. This species is a valuable genetic resource for asparagus breeding because of its special characteristics. So, the development of a micropropagation protocol is crucial to its conservation and use in breeding programs. The micropropagation protocol from asparagus rhizome buds previously developed by our research group has been adapted for A. macrorrhizus. Rhizome buds of A. macrorrhizus were extracted, disinfected, and then cultured on Asparagus Rhizome Bud Medium (ARBM) consisting of MS medium supplemented with 0.3 mg l??1 NAA, 0.1 mg l??1 KIN, 2 mg l??1 ancymidol and 6% sucrose. A percentage of 69.7?±?8.0% of the rhizome buds developed shoots, but only 17.4?±?7.9% of them rooted. To increase this low rooting rate, the shoots were cultured on Macrorrhizus Rooting Media (MRM) supplemented with three different concentrations of IBA. The highest rooting rate (55.0?±?7.9%) was reached when shoots were incubated in MRM-2 consisting of MS medium supplemented with 2 mg l??1 IBA and 4% sucrose. The acclimatization rate of the micropropagated plantlets was 90%. The method developed in this study allows the micropropagation of A. macrorrhizus, offering a new option to preserve this almost extinct species.  相似文献   

17.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

18.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

19.
A micropropagation system for Bauhinia racemosa Lam. was developed involving axillary shoot proliferation and ex vitro rooting using nodal explants obtained from mature tree. MS medium with 3.0 mg l?1 BA (6-benzyladenine) was optimum for shoot bud induction. For shoot multiplication, mother explants were transferred repeatedly on medium containing low concentration of BA (0.75 mg l?1). Number of shoots was increased up to two passages and decreased thereafter. Shoot multiplication was further enhanced on MS medium containing 0.25 mg l?1 each of BA and Kin (Kinetin) with 0.1 mg l?1 of NAA (α-naphthalene acetic acid). Addition of 0.004 mg l?1 TDZ (thidiazuron) increased the rate of shoot multiplication and 21.81 ± 1.26 shoots per culture vessel were obtained. In vitro regenerated shoots were rooted under ex vitro conditions treated with 400 mg l?1 IBA (indole-3-butyric acid) for 7 min on sterile soilrite. After successful hardening in greenhouse, ex vitro rooted plants were transferred to the field conditions with ≈85% of survival rate. Micromorphological changes were observed on leaf surface i.e. development of vein density and trichomes and stomatal appearance, when plants were subjected to environmental conditions. This is the first report on in vitro regeneration of B. racemosa from mature tree.  相似文献   

20.
Plumbago zeylanica L., an important medicinal herb, possesses plumbagin, a valuable secondary metabolite. Roots of this plant, collected from four locations in Himachal Pradesh, India, were screened for plumbagin content with high-performance liquid chromatography. The chemotype collected from Hamirpur yielded the highest content (26.47?±?0.63 mg g?1 dry weight). Callus cultures were established from nodal explants of this chemotype on Murashige and Skoog (MS) medium augmented with α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid, (2,4-D), 6-benzyladenine (BA), isopentenyl adenine (2iP), or thidiazuron, (TDZ). After 45 d, 98% of the cultures induced bright-green, compact callus on MS?+?5 μM TDZ. Upon subculturing, this callus differentiated an average of 4.08?±?1.16 shoots in 62.5% of the cultures. After elongation on basal MS medium, excised shoots were transferred to indole-3-acetic acid, NAA, or IBA supplemented MS medium. A maximum of 4.3?±?1.36 roots with an average length of 15.31?±?2.76 cm were recorded on 5 μM IBA. Rooted plantlets were successfully acclimatized in a greenhouse, and their genetic fidelity was evaluated using inter simple sequence repeats and start codon targeted molecular markers, which revealed 97% similarity. A significant increase in plumbagin content (6.5- and 3.4-fold) was achieved in root callus employing 100 mg L?1 yeast extract (YE) and 25 μM salicylic acid (SA), respectively. This is the first report of large-scale propagation of P. zeylanica and an increase of plumbagin through in vitro root callus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号