首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.

Methods

Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall) were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.

Results

Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.

Conclusion

Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.  相似文献   

2.

Efficient delivery of antigens to the gut-associated lymphoid tissue (GALT) is the most critical step for the induction of mucosal immunity by oral vaccines. As M cells are the main portal for luminal antigens into the GALT, the M cell-targeting of antigens affords a promising strategy toward the development of effective oral vaccines. Lactococcus lactis is a fascinating recombinant host for oral vaccines, as they survive and produce antigens in the gut and have a particularly safe profile for human use. In this study, we developed and evaluated an M cell–targeting oral immunization system using recombinant L. lactis strains. For the purpose, we generated an L. lactis strain that secretes a model antigen fused with the OmpH β1α1 domain of Yersinia enterocolitica, which has been shown to bind to a complement C5a receptor on the M cell surface. As the model antigen, Staphylococcus aureus nuclease was used for fusion, resulting in L. lactis–expressing Nuc-OmpH (LL/Nuc-OmpH). Ex vivo intestinal loop assays showed that the amount of Nuc-OmpH taken up into Peyer’s patches was more than that of the unfused nuclease (Nuc). In addition, oral administration of the recombinant L. lactis strains to mice demonstrated that LL/Nuc-OmpH-induced nuclease-specific fecal IgA and serum IgG titers were significantly higher than those induced by LL/Nuc. These results indicate that OmpH works as an M cell–targeting molecule when fused with antigens secreted from L. lactis and that the M cell–targeting strategy affords a promising platform for L. lactis–based mucosal immunization.

  相似文献   

3.
The purpose of the study was to construct mucosal vaccine of a recombinant Lactococcus lactis expressing PRRSV ORF6 gene and evaluate mucosal and systemic immune response against PRRSV in mice after intranasal immunization. The result show that the vaccine can stimulate mice to produce specific IgG in serum and remarkable special s-IgA in lung lavage fluid, at the same time, the contents of cytokines IL-2 and IFN-γ of the experimental group were significant higher than those of the control group (P < 0.01), however, the contents of cytokines IL-4 was not different to the all groups. In summary, the constructed mucosal vaccine can significantly induce mucosal immune, humoral immunity and cellular immunity involved Th1 type cytokines, which will lay a theoretical foundation on immune mechanism and new efficient vaccines for PRRSV.  相似文献   

4.

Background

Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines.

Methodology/Principal findings

We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional TH1 CD4+ and CD8+ T cells and a systemic LACK-specific TH1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific TH1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective TH1 response.

Conclusions/Significance

This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.  相似文献   

5.

Background

Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge.

Methodology/Principal Finding

In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors.

Conclusion/Significance

These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge.  相似文献   

6.
The use of the food-grade bacterium Lactococcus lactis as a DNA delivery vehicle at the mucosal level is an attractive DNA vaccination strategy. Previous experiments showed that recombinant L. lactis expressing the Listeria monocytogenes inlA gene can deliver a functional gene into mammalian cells. Here, we explored the potential use of noninvasive L. lactis strains as a DNA delivery vehicle. We constructed two Escherichia coli-L. lactis shuttle plasmids, pLIG:BLG1 and pLIG:BLG2, containing a eukaryotic expression cassette with the cDNA of bovine β-lactoglobulin (BLG). The greatest BLG expression after transfection of Cos-7 cells was obtained with pLIG:BLG1, which was then used to transform L. lactis MG1363. The resulting L. lactis strain MG1363(pLIG:BLG1) was not able to express BLG. The potential of L. lactis as a DNA delivery vehicle was analyzed by detection of BLG in Caco-2 human colon carcinoma cells after 3 h of coincubation with (i) purified pLIG:BLG1, (ii) MG1363(pLIG:BLG1), (iii) a mix of MG1363(pLIG) and purified pLIG:BLG1, and (iv) MG1363. Both BLG cDNA and BLG expression were detected only in Caco-2 cells coincubated with MG1363(pLIG:BLG1). There was a decrease in the BLG cDNA level in Caco-2 cells between 24 and 48 h after coincubation. BLG expression by Caco-2 cells started at 24 h and increased between 24 and 72 h. BLG secretion by Caco-2 cells started 48 h after coincubation with MG1363(pLIG:BLG1). We conclude that lactococci can deliver BLG cDNA into mammalian epithelial cells, demonstrating their potential to deliver in vivo a DNA vaccine.  相似文献   

7.
Most studies on probiotics aim to restore intestinal homeostasis to reduce immune-pathology in disease. Of equal importance are studies on how probiotics might prevent or delay disease in healthy individuals. However, knowledge on mechanisms of probiotic actions in healthy individuals is scarce. To gain more insight in how different bacterial strains may modulate the healthy intestinal immune system, we investigated the effect of the food derived bacterial strains L. plantarum WCFS1, L. salivarius UCC118, and L. lactis MG1363, on the intestinal regulatory immune phenotype in healthy mice. All three bacterial strains induced an upregulation of activity and numbers of CD11c+ MHCII+ DCs in the immune-sampling Peyer’s Patches. Only L. salivarius UCC118 skewed towards an immune regulatory phenotype in the small intestinal lamina propria (SILP). The effects were different in the large intestine lamina propria. L. salivarius UCC118 induced activation in both CD4 and CD8 positive T-cells while L. plantarum WCFS1 induced a more regulatory phenotype. Moreover, L. plantarum WCFS1 decreased the Th1/Th2 ratio in the SILP. Also L. lactis MG1363 had immunomodulatory effects. L. lactis MG1363 decreased the expression of the GATA-3 and T-bet in the SILP. As our data show that contradictory effects may occur in different parts of the gut, it is recommended to study effects of probiotic in different sites in the intestine. Our strain-specific results suggest that unspecified application of probiotics may not be very effective. Our data also indicate that selection of specific probiotic strain activities on the basis of responses in healthy mice may be a promising strategy to specifically stimulate or suppress immunity in specific parts of the intestine.  相似文献   

8.
The efficacy of recombinant Lactococcus lactis as a delivery vehicle for a rotavirus antigen was evaluated in a mouse model. The rotavirus VP8* protein was expressed intracellularly and extracellularly in L. lactis wild type and in an alr mutant deficient in alanine racemase activity, necessary for the synthesis of the cell-wall component d-alanine. When the mucosal immune response was evaluated by measuring VP8*-specific IgA antibody in faeces, wild-type L. lactis triggered a low IgA synthesis only when the secreting strain was used. In contrast, VP8*-specific IgA was detected in faeces of both groups of mice orally given the alr mutant expressing extracellular VP8* and intracellular VP8*, which reached levels similar to that obtained with the wild type secreting strain. However, oral administration of the recombinant strains did not induce serum IgG or IgA responses. L. lactis cell-wall mutants may therefore provide certain advantages when low-antigenic proteins are expressed intracellularly. However, the low immune response obtained by using this antigen-bacterial host combination prompts to the use of new strains and vaccination protocols in order to develop acceptable rotavirus immunization levels.  相似文献   

9.

Background:

During the last two decades, significant advances have been made in the fields of lactococcal genetics and protein expression. Lactococcus lactis (L. lactis) is an effective vector for protein expression and can be used as an antigen delivery system. Hence, L. lactis is an ideal candidate for mucosal immunotherapy. Profilin (Che a 2), the major allergen in Chenopodium album, is one of the most important causes of allergic diseases in desert and semi-desert areas, especially in Iran, Saudi Arabia, and Kuwait that was cloned and expressed in L. lactis for the first time.

Methods:

To construct L. lactis that expressed Che a 2, a DNA sequence was cloned and used to transform bacteria. Expression of Che a 2 was analyzed via monitoring of related RNA and protein. Hydrophobicity, adherence to HT-29 cells, antibiotic resistance, resistance to gastrointestinal contents, pH, and bile salt in recombinant and native L. lactis were evaluated.

Results:

Immunoblot analyses demonstrated that recombinant Che a 2 is expressed as a 32 kDa dimeric protein immunological studies showed it can bind human IgE. Both native and recombinant bacteria were sensitive to low pH and simulated gastric conditions. Bacterial survival was reduced 80-100% after 2 h of exposure to pH 1.5-2. Both native and recombinant bacteria were able to grow in 0.3 and 2% bile salts. After incubation of recombinant L. lactis in simulated gastric and intestinal juices for one and two hours, respectively, cell survival was reduced by 100%. Adhesion capability in both strains was minimal and there were no significant differences in any of our tests between native and recombinant bacteria.

Conclusion:

Successfully recombinant L. lactis with capability of expression Che a 2 was produced and revealed it is sensitive to gastrointestinal contents. Key Words: Recombinant L. lactis, Probiotic bacteria, Chenopodium pollen allergen, Oral vaccines  相似文献   

10.
Bovine β-lactoglobulin (Blg) is one of the major cow's milk allergens. Peptide 41-60 of Blg (Blg41-60) was described as a murine T-cell determinant and a murine, rat, and human immunoglobulin E (IgE) epitope. The aim of this study was the expression of Blg41-60 as a fusion protein in the food-grade bacterium Lactococcus lactis and the characterization of its immunogenicity in mice. We constructed a recombinant strain of L. lactis capable of inducible production and secretion of Blg41-60::Nuc, a fusion protein between Blg41-60 and the mature part of the staphylococcal nuclease (Nuc). The highest production yield of Blg41-60::Nuc (32.5 mg/liter) was reached 4 h after induction. At this time, up to 75% of Blg41-60::Nuc was secreted. When monoclonal antibodies specific for Blg41-60 were used, purified Blg41-60::Nuc and synthetic Blg41-60 exhibited very similar immunoreactivities. Subcutaneous coadministration of purified Blg41-60::Nuc and killed nonrecombinant L. lactis resulted in the induction of specific anti-Blg41-60 IgG2a and IgG1. The IgG1/IgG2a ratio and the lack of specific IgE suggest a Th1-type immune response, i.e., a nonallergic response. Similar administrations of the killed Blg41-60::Nuc-producing L. lactis strain did not elicit a specific immune response, whereas a transitory mucosal IgA-specific immune response was induced in mice after oral administration of the live Blg41-60::Nuc-producing L. lactis strain.  相似文献   

11.
Human rotavirus (HRV) is the worldwide leading cause of gastroenteritis in young children. Two live attenuated HRV vaccines have been approved since 2006. However, these live vaccines still have potential risks including reversion of virulence. Adenoviruses are suitable vectors for mucosal administration of subunit vaccines. In addition to the adjuvant effect of certain adenovirus components, the use of an adjuvant like flagellin is also another means to increase the immune response to the immunogen. The aim of this study was to determine whether flagellin in fusion with HRV structural proteins stimulates the innate immune response and enhances the HRV-specific immune response when delivered through the intrarectal route with replicating but non-disseminating adenovector (R-AdV). Salmonella typhimurium flagellin B (FljB) in fusion with HRV VP4Δ::VP7 protein induced IL-1β production in J774A.1 macrophages exposed to the R-AdV. Intrarectal administration of R-AdVs expressing either VP4Δ::VP7 or VP4Δ::VP7::FljB in BALB/c mice resulted in HRV-specific mixed Th1/Th2 immune responses. The HRV-specific antibody response elicited with the use of R-AdV expressing VP4Δ::VP7::FljB was higher than that with R-AdV expressing VP4Δ::VP7. The results also show that the replication capability of R-AdVs contributed to enhance the HRV-specific immune response as compared with that obtained with non-replicative AdVs. This work lays the foundation for using the R-AdV system and FljB-adjuvanted formulation to elicit a mucosal immune response specific to HRV.  相似文献   

12.
Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non‐invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non‐invasive r‐ L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein‐expressing Caco‐2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens.  相似文献   

13.
Diabetes mellitus type 1 (DM1) is an autoimmune disease that gradually destroys insulin-producing beta-cells. We have previously reported that mucosal administration of fusion protein of HSP65 with tandem repeats of P277 (HSP65-6P277) can reduce the onset of DM1 in non-obese diabetic (NOD) mice. To deliver large amounts of the fusion protein and to enhance long-term immune tolerance effects, in the present study, we investigated the efficacy of using orally administrated L. lactis expressing HSP65-6P277 to reduce the incidence of DM1 in NOD mice. L. lactis strain NZ9000 was engineered to express HSP65-6P277 either constitutively or by nisin induction. After immunization via gavage with the recombinant L. lactis strains to groups of 4-week old female NOD mice for 36 weeks, we observed that oral administration of recombinant L. Lactis resulted in the prevention of hyperglycemia, improved glucose tolerance and reduced insulitis. Immunologic analysis showed that treatment with recombinant L. lactis induced HSP65- and P277- specific T cell immuno-tolerance, as well as antigen-specific proliferation of splenocytes. The results revealed that the DM1-preventing function was in part caused by a reduction in the pro-inflammatory cytokine IFN-γ and an increase in the anti-inflammatory cytokine IL-10. Orally administered recombinant L. lactis delivering HSP65-6P277 may be an effective therapeutic approach in preventing DM1.  相似文献   

14.

Background  

Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted.  相似文献   

15.
Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides.  相似文献   

16.
Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients.  相似文献   

17.
In this study, we compared immune responses elicited by DNA immunization using Lactococcus lactis or L. lactis expressing the Staphylococcus aureus invasin Fibronectin Binding Protein A (FnBPA) at its surface. Both strains carried pValac:BLG, a plasmid containing the cDNA of Beta-Lactoglobulin (BLG), and were designated LL-BLG and LL-FnBPA+ BLG respectively. A TH2 immune response characterized by the secretion of IL-4 and IL-5 in medium of BLG reactivated splenocytes was detected after either oral or intranasal administration of LL-FnBPA+ BLG. In contrast, intranasal administration of LL-BLG elicited a TH1 immune response. After BLG sensitization, mice previously intranasally administered with LL-BLG showed a significantly lower concentration of BLG-specific IgE than the mice non-administered. Altenatively administration of LL-FnBPA+ BLG didn''t modify the BLG-specific IgE concentration obtained after sensitization, thus confirming the TH2 orientation of the immune response. To determine if the TH2-skewed immune response obtained with LL-FnBpA+ BLG was FnBPA-specific or not, mice received another L. lactis strain producing a mutated form of the Listeria monocytogenes invasin Internalin A intranasally, allowing thus the binding to murine E-cadherin, and containing pValac:BLG (LL-mInlA+ BLG). As with LL-FnBPA+ BLG, LL-mInlA+ BLG was not able to elicit a TH1 immune response. Furthermore, we observed that these difference were not due to the peptidoglycan composition of the cell wall as LL-FnBPA+ BLG, LL-mInlA+ BLG and LL-BLG strains shared a similar composition. DNA vaccination using LL-BLG elicited a pro-inflammatory TH1 immune response while using LL-FnBPA+ BLG or LL-mInlA+ BLG elicited an anti-inflammatory TH2 immune response.  相似文献   

18.
The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations.  相似文献   

19.
Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag.  相似文献   

20.
The role of muramyl dipeptide (MDP) and tuftsin in oral immune adjustment remains unclear, particularly in a Lactobacillus casei (L. casei) vaccine. To address this, we investigated the effects of different repetitive peptides expressed by L. casei, specifically the MDP and tuftsin fusion protein (MT) repeated 20 and 40 times (20MT and 40MT), in mice also expressing the D antigenic site of the spike (S) protein of transmissible gastroenteritis virus (TGEV) on intestinal and systemic immune responses and confirmed the immunoregulation of these peptides. Treatment of mice with a different vaccine consisting of L. casei expressing MDP and tuftsin stimulated humoral and cellular immune responses. Both 20MT and 40MT induced an increase in IgG and IgA levels against TGEV, as determined using enzyme-linked immunosorbent assay. Increased IgG and IgA resulted in the activation of TGEV-neutralising antibody activity in vitro. In addition, 20MT and 40MT stimulated the differentiation of innate immune cells, including T helper cell subclasses and regulatory T (Treg) cells, which induced robust T helper type 1 and T helper type 17 (Th17) responses and reduced Treg T cell immune responses in the 20MT and 40MT groups, respectively. Notably, treatment of mice with L. casei expressing 20MT and 40MT enhanced the anti-TGEV antibody immune responses of both the humoral and mucosal immune systems. These findings suggest that L. casei expressing MDP and tuftsin possesses substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration, and it may be useful in oral vaccines against TGEV challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号