首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.  相似文献   

2.
Applied Microbiology and Biotechnology - This work reports on the oxidation of long-chain aliphatic alcohols catalyzed by a stabilized alcohol dehydrogenase from S. cerevisiae (yeast alcohol...  相似文献   

3.
Meso-secondary alcohol dehydrogenases (meso-SADH) from Klebsiella oxytoca KCTC1686 and Klebsiella pneumoniae KCTC2242 were codon optimized and expressed in Escherichia coli W3110. The published gene data of K. pneumoniae NTUH-K2044 (NCBI accession number AP006725), K. pneumoniae 342 (NCBI accession number CP000964), and K. pneumoniae MGH 78578 (NCBI accession number CP000647), were compared with the meso-SADH sequences of each strain, respectively. Codon-optimized meso-SADH enzymes of K. oxytoca and K. pneumoniae showed approximately twofold to fivefold increased enzyme activities for acetoin reduction over native enzymes. The highest activities for each strain were obtained at 30–37 °C and pH 6–7 (yielding 203.1 U/mg of protein and 156.5 U/mg of protein, respectively). The increased enzyme activity of the codon-optimized enzymes indicated that these modified enzymes could convert acetoin into 2,3-butanediol with a high yield.  相似文献   

4.
Immobilization of alcohol dehydrogenase (ADH) from Horse Liver inside porous supports promotes a dramatic stabilization of the enzyme against inactivation by air bubbles in stirred tank reactors. Moreover, immobilization of ADH on glyoxyl-agarose promotes additional stabilization against any distorting agent (pH, temperature, organic solvents, etc.). Stabilization is higher when using highly activated supports, they are able to immobilize both subunits of the enzyme. The best glyoxyl derivatives are much more stable than conventional ADH derivatives (e.g., immobilized on BrCN activated agarose). For example, glyoxyl immobilized ADH preserved full activity after incubation at pH 5.0 for 20h at room temperature and conventional derivatives (as well as the soluble enzyme) preserved less than 50% of activity after incubation under the same conditions. Moreover, glyoxyl derivatives are more than 10 times more stable than BrCN derivatives when incubated in 50% acetone at pH 7.0. Multipoint covalent immobilization, in addition to multisubunit immobilization, seems to play an important stabilizing role against distorting agents. In spite of these interesting stabilization factors, immobilization hardly promotes losses of catalytic activity (keeping values near to 90%). This immobilized preparation is able to keep good activity using dextran-NAD(+). In this way, ADH glyoxyl immobilized preparation seems to be suitable to be used as cofactor-recycling enzyme-system in interesting NAD(+)-mediated oxidation processes, catalyzed by other immobilized dehydrogenases in stirred tank reactors.  相似文献   

5.
Heat denaturation of horse liver alcohol dehydrogenase was followed in the presence of isobutyramide at various degrees of saturation of the binding sites by NADH. A study of the fluorescence enhancement which is observed when an excess of NADH is added to the partially denatured mixtures provides information regarding the relative concentrations of mono- and bioccupied enzyme molecules. This approach is of value in situations when the association constants for coenzyme are so large that the concentration of the free ligand is negligible. The results obtained indicate that the binding of NADH to liver alcohol dehydrogenase follows the statistically predicted distribution. At the same time evidence was obtained for interaction between the two subunits of the enzyme.  相似文献   

6.
7.
To elucidate the correlation of structural peculiarities of beta-casein and their chaperon-like activity the modified forms of the protein (with cysteinyl residues introduced in polypeptide chain) were investigated. The aggregation of native and recombinant beta-caseins was studied as well as their chaperon-like activity towards alcohol dehydrogenase thermal aggregation. It was shown that physico-chemical and chaperone-like properties ofdimeric and oligomeric forms ofbeta-casein (which formation is due to intermolecular disulfide bonds) differ significantly from monomeric forms. It was found that thermal stability of alcohol dehydrogenase depends on beta-casein concentration.  相似文献   

8.
9.
The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.  相似文献   

10.
DNA-histone interaction facilitates packaging of huge amounts of DNA in the confined space of the nucleus. The importance of this interaction underscores the need for new analytical techniques to acquire a better understanding of nuclear dynamics. Electrospray-ionization mass spectrometry made it possible to investigate non-covalently-bound biopolymers. We are enlarging the scope of available analytical tools by studying non-covalent interaction between single and double stranded DNA and peptides with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The interaction is an ionic one, between the negatively charged sugar-phosphate backbone of single stranded DNA and positively charged side chains of Arg- and Lys-rich peptides as demonstrated by Vertes' group1 with the dipeptides Arg-Lys and His-His. We replicated Lecchi and Pannell's work,2 which showed that double stranded DNA could be seen by MALDI using 6-aza-2-thiothymine (ATT) as matrix. We tried various peptides and found that as was demonstrated in DNA-histone interaction, a certain ratio and arrangement of basic residues was needed in order to generate ionic binding between DNA and peptide. We tested various single and double stranded DNA with the peptide of choice, and found that other variables such as pH value of solution, ionic strength, and matrix system did play a role. Proteins Suppl. 2:12–21, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Inhibition of alcohol dehydrogenase by bismuth   总被引:1,自引:0,他引:1  
Bismuth compounds have been widely used for the treatment of ulcers and Helicobacter pylori infection, and enzyme inhibition was thought to be crucial for bismuth anti-microbial activity. We have investigated the interaction of colloidal bismuth subcitrate (CBS) with alcohol dehydrogenase and our results demonstrate that bismuth can effectively inhibit the enzyme. Kinetic analysis revealed that CBS acted as a non-competitive inhibitor of yeast alcohol dehydrogenase. Both UV-vis and fluorescence data show that interaction of CBS with the enzyme exhibits biphasic processes. Bismuth can replace only half of Zn(II) from the enzyme (i.e., about one Zn(II) per monomer). Surprisingly, binding of CBS also induces the enzyme dissociation from its native form, tetramer into dimers. The inhibition of Bi(III) on the enzyme is probably due to its direct interference with the zinc sites. This study is likely to provide an insight into the mechanism of action of bismuth drugs.  相似文献   

12.
The pattern of covalent crosslinking between human alpha 2-macroglobulin (alpha 2M) and chymotrypsin has been investigated by chromatography and polyacrylamide gel electrophoresis in denaturing medium. Reaction with a single mol of chymotrypsin per mol alpha 2M results in the formation of a 95% covalent 1:1 chymotrypsin-alpha 2M complex and in the proteolytic cleavage of both 180 kDa monomers in one alpha 2M subunit. Proteolytic cleavage in the other alpha 2M subunit requires the presence of a second mol of chymotrypsin; part (20%) of the protease in the 2:1 chymotrypsin-alpha 2M complex thus formed appears to be non-covalently bound to the alpha 2M chains. Covalent binding is abolished when the reaction of alpha 2M with the protease is carried out in the presence of hydroxylamine. A single mol of the protease is then able to cleave all four 180 kDa monomers in alpha 2M.  相似文献   

13.
Benzyl alcohol dehydrogenase from Acinetobacter calcoaceticus oxidises a wide range of aromatic and other cyclic alcohols and it has high specificity constants for these substrates, but it does not oxidise short- or long-chain aliphatic alcohols. Mutation of an active-site arginine to a histidine can switch the substrate specificity of the enzyme so that it has a very much greater preference for perillyl alcohol than for benzyl alcohol. © Rapid Science Ltd. 1998  相似文献   

14.
The possible use of EPR spectroscopy (spin labelling) for the study of horse liver alcohol dehydrogenase with a silochrome adsorbent is discussed. The rotatory diffusion of nitroxyl labels chemically linked to the enzyme was studied with reference to the time of the enzyme incubation with the adsorbent and the degree of its accumulation on the adsorbent surface. The mobility of nitroxyl radicals attached to the protein globules was shown to increase with time. It was concluded that the conformation of the enzyme molecules changes during their interaction with the adsorbent.  相似文献   

15.
Yeast alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1), a potentially useful enzyme for cofactor regeneration processes, was covalently immobilized in a multipoint fashion by activation with acryloyl chloride and subsequent copolymerization in a polyacrylamide gel. Several properties such as the activity and stability were systematically studied for the free enzyme, the acryloate-enzyme and the immobilized enzyme. The activation energy was significantly lowered upon immobilization. The thermal stability of the immobilized enzyme was, however, greatly increased. But its maximum activity was observed at a lower temperature. These results suggest an important effect of the diffusional restrictions and of the mode of activation and immobilization on the activity and the stability of the enzyme.  相似文献   

16.
The role of zinc in liver alcohol dehydrogenase has been studied by replacement of 1.3 and 3.5 of the four Zn(II) ions with Co(II) and measuring the effects of the paramagnetic Co(II) on the relaxation rates of the protons of water, ethanol, and isobutyramide. Water relaxation studies at 8, 24, 100, and 220 MHz indicate two classes of bound Co(II). The similar to 2 readily replaced Co(II) ions retain one fast exchanging water proton in their inner coordination spheres, while the similar to 2 slowly exchanging Co(II) ions coordinate no detectable water protons, indicating that the former replaced Zn(II) at the "catalytic sites" and the latter replaced Zn(II) at the "structural sites" detected crystallographically. Ethanol, acetaldehyde, and isobutyramide bind with appropriate affinities to the Co(II) substituted alcohol dehydrogenases decreasing the number of fast exchanging protons at the catalytic Co(II) site by greater than or equal to 54 percent. Coenzyme binding causes smaller changes in the water relaxation rate which may be due to local conformation changes. The paramagnetic effects of Co(II) at the catalytic site on the relaxation rates of the methyl protons of isobutyramide at 100 and 220 MHz indicate that this analog binds at a site 9.1 A from the catalytic Co(II). This distance decreases to 6.9 A when NADH is bound, and a Co(II) to methyne proton distance of 6.6 A is determined indicating a conformation change leading to the formation of a second sphere enzyme-Co(II)-isobutyramide complex in which a hydroxyl or water ligand intervenes between the metal and the substrate analog. Similar behavior is observed in the enzyme-ethanol complexes. The paramagnetic effects of Co(II), at the catalytic site, on the relaxation rates of the protons of ethanol at 100 and 220 MHz, indicate that this substrate bind at a site 12-14 A distant from the catalytic Co(II) but that this distancedecreases to 6.3 A in the abortive enzyme-NADH-ethanol complex. The role of the catalytic Co(II) thus appears to be the activation of a hydroxyl or water ligand which polarizes the aldehyde carbonyl group by hydrogen bonding. The role of the structural Co(II), which is more distant from isobutyramide (9-11 A), may be that of a template for protein conformation changes. By combining the present distances with those from previous magnetic resonance studies on the liver enzyme, the arrangement of coenzyme, metal, and substrate at the active site in solution can be constructed. This arrangement is consistent with that of ADP-ribose and zinc in the crystalline complex of liver alcohol dehydrogenase as determined by X-ray crystallography (Branden et al., (1973), Proc. Natl. Acad. Sci. U.S.A.70, 2439).  相似文献   

17.
Alcohol dehydrogenase (ADH) was used as a marker molecule to clarify the mechanism of gastric mucosal damage as a side effect of using piroxicam. Piroxicam inactivated ADH during interaction of ADH with horseradish peroxidase and H2O2 (HRP-H2O2). The ADH was more easily inactivated under aerobic than anaerobic conditions, indicating participation by oxygen. Superoxide dismutase, but not hydroxyl radical scavengers, inhibited inactivation of ADH, indicating participation by superoxide. Sulfhydryl (SH) groups in ADH were lost during incubation of piroxicam with HRP-H2O2. Adding reduced glutathione (GSH) efficiently blocked ADH inactivation. Other SH enzymes, including creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, were also inactivated by piroxicam with HRP-H2O2. Thus SH groups in the enzymes seem vulnerable to piroxicam activated by HRP-H2O2. Spectral change in piroxicam was caused by HRP-H2O2. ESR signals of glutathionyl radicals occurred during incubation of piroxicam with HRP-H2O2 in the presence of GSH. Under anaerobic conditions, glutathionyl radical formation increased. Thus piroxicam free radicals interact with GSH to produce glutathionyl radicals. Piroxicam peroxyl radicals or superoxide, or both, seem to inactivate ADH. Superoxide may be produced through interaction of peroxyl radicals with H2O2. Thus superoxide dismutase may inhibit inactivation of ADH through reducing piroxicam peroxyl radicals or blocking interaction of SH groups with O2-, or both. Other oxicam derivatives, including isoxicam, tenoxicam and meloxicam, induced ADH inactivation in the presence of HRP-H2O2.  相似文献   

18.
19.
D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol.  相似文献   

20.
本研究采用3-丙氨基三乙氧基硅烷(APTES)和戊二醛修饰包裹有SiO2磁性Fe3O4纳米颗粒表面,将其作为固定化载体固定化乙醇脱氢酶,研究固定化条件对固定化效率的影响,并对固定化酶性质进行分析。研究发现,当Fe3O4@SiO2纳米颗粒修饰上氨基和醛基后依然具有良好的水分散性和胶体稳定性,适合作为固定化载体。通过单因素优化,发现当最适给酶量为11. 3U/100 mg,搅拌转速为150 r/min,固定化p H和固定化温度分别控制在6. 5和5℃~15℃,固定化时长为45 min时,具有较好的固定化效果,固定化率可达到60. 2%。在此条件下制备得到的固定化酶与游离酶相比,固定化酶具有良好的耐高温和耐碱性。所得固定化乙醇脱氢酶在连续使用8次后,固定化率仍保留在57%左右,表明该固定化酶具有较好的操作稳定性,可为连续生产NADH提供技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号