首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDHATCC 39116 was purified to apparent electrophoretic homogeneity and exhibited NAD+-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.  相似文献   

2.
This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.  相似文献   

3.
A strain designated as BA03, with the ability to transform ferulic acid into vanillin and 4-vinylguaiacol, was isolated from contaminated cryovials. The production of natural value-added compounds was dependent on the media employed. The morphological and physiological characteristics of this strain were compared with those of the typical vanillin-producer strain Amycolatopsis sp. ATCC 39116. According to a partial 16S rRNA sequence, we determined that BA03 belonged to Bacillus aryabhattai. In addition, analysis of the results showed that this strain exhibited interesting enzymatic activity, including cellulases, laccases, lipases and pectinases. In light of this, we propose new functions for this multitasking microorganism. We suggest that it may be used for converting lignocellulosic wastes into byproducts with industrial uses, and also for treating disposal residues such as dyes in the textile industry. Hence, the possibility for novel research with B. aryabhattai opens up in the fields of biodegradation and/or revalorization of wastes.  相似文献   

4.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

5.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of β-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional β-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the β-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the β-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the β-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of β-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

6.
The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.  相似文献   

7.
Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficiant to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86 % within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.  相似文献   

8.
Available molecular and genetic tools for the genetic manipulation of Arthrobacter species are limited until now. In gene engineering, a continuous set of promoters with various strengths are of importance for fine-tuning gene expression in metabolic optimization and control analysis. Here, for the first time, we constructed a promoter trap system using green fluorescence protein (GFP) as a reporter, for screening and characterizing functional Arthrobacter promoters. Twenty-three Arthrobacter transformants of various GFP fluorescence strengths were isolated and characterized through the analysis of DNA sequences. Among the 23 putative promoters, 2 were selected for deletion analysis of promoter elements. As a result, the deletion of the upstream of the putative promoter P8 and P13 caused a 43.8% decrease and a 29.1% increase in the fluorescence signals, respectively. Finally, we obtained the strongest promoter P13-3 which was 4.4 times more potent than the promoter of 6–hydroxyl–d–nicotine oxidase gene which was previously reported in Arthrobacter nicotinovorans, and the obtained promoter was used to improve the production of cyclic adenosine monophosphate in Arthrobacter sp. CGMCC 3584. The screening strategy together with obtained promoters in this study would contribute to the future engineering of Arthrobacter species.  相似文献   

9.
The recent expansion of genetic and genomic tools for metabolic engineering has accelerated the development of microorganisms for the industrial production of desired compounds. We have used transposable elements to identify chromosomal locations in the obligate methanotroph Methylomonas sp. strain 16a that support high-level expression of genes involved in the synthesis of the C40 carotenoids canthaxanthin and astaxanthin. with three promoterless carotenoid transposons, five chromosomal locations—the fliCS, hsdM, ccp-3, cysH, and nirS regions—were identified. Total carotenoid synthesis increased 10- to 20-fold when the carotenoid gene clusters were inserted at these chromosomal locations compared to when the same carotenoid gene clusters were integrated at neutral locations under the control of the promoter for the gene conferring resistance to chloramphenicol. A chromosomal integration system based on sucrose lethality was used to make targeted gene deletions or site-specific integration of the carotenoid gene cluster into the Methylomonas genome without leaving genetic scars in the chromosome from the antibiotic resistance genes that are present on the integration vector. The genetic approaches described in this work demonstrate how metabolic engineering of microorganisms, including the less-studied environmental isolates, can be greatly enhanced by identifying integration sites within the chromosome of the host that permit optimal expression of the target genes.  相似文献   

10.
11.
Yoon SH  Li C  Kim JE  Lee SH  Yoon JY  Choi MS  Seo WT  Yang JK  Kim JY  Kim SW 《Biotechnology letters》2005,27(22):1829-1832
E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l−1 was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources.  相似文献   

12.
Cyanobacteria are photosynthetic bacteria that are currently being developed as biological production platforms. They derive energy from light and carbon from atmospheric carbon dioxide, and some species can fix atmospheric nitrogen. One advantage of developing cyanobacteria for renewable production of biofuels and other biological products is that they are amenable to genetic manipulation, facilitating bioengineering and synthetic biology. To expand the currently available genetic toolkit, we have demonstrated the utility of synthetic theophylline-responsive riboswitches for effective regulation of gene expression in four diverse species of cyanobacteria, including two recent isolates. We evaluated a set of six riboswitches driving the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942, Leptolyngbya sp. strain BL0902, Anabaena sp. strain PCC 7120, and Synechocystis sp. strain WHSyn. We demonstrated that riboswitches can offer regulation of gene expression superior to that of the commonly used isopropyl-β-d-thiogalactopyranoside induction of a lacIq-Ptrc promoter system. We also showed that expression of the toxic protein SacB can be effectively regulated, demonstrating utility for riboswitch regulation of proteins that are detrimental to biomass accumulation. Taken together, the results of this work demonstrate the utility and ease of use of riboswitches in the context of genetic engineering and synthetic biology in diverse cyanobacteria, which will facilitate the development of algal biotechnology.  相似文献   

13.
14.
《Gene》1999,226(2):317-325
Molecular genetic analyses of biological properties characteristic of insect vectors of disease, such as hematophagy and competence for pathogens, require the ability to isolate and characterize genes involved in these processes. We have been working to develop molecular approaches for studying the promoter function of genes that are expressed specifically in the adult salivary glands of the yellow fever mosquito, Aedes aegypti. Genomic DNA fragments containing cis-acting promoter elements from the Maltase-like I (MalI) and Apyrase (Apy) genes were cloned so as to direct the expression of the reporter gene, luciferase (luc). The function of the promoters was assayed transiently in cultured insect cells and by germ-line transformation of Ae. aegypti. MalI and Apy DNA fragments consisting of at least 650 nucleotides (nt) of DNA immediately adjacent to the 5′-end of the initiation codon of the mosquito genes directed constitutive expression of the luc reporter gene in cultured cells. When introduced into Ae. aegypti chromosomes, approximately 1.5 kilobases (kb) of each promoter were able to direct the predicted developmental-, sex- and tissue-specific expression of the reporter gene in patterns identical to those determined for the respective endogenous genes.  相似文献   

15.
16.
17.
18.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

19.
Li  Ning  Yuan  Deyi  Huang  Li-Jun 《Transgenic research》2019,28(5-6):561-572

Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator–reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号