首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nielsen AH  Olsen CE  Møller BL 《Phytochemistry》2005,66(24):2829-2835
Kalancho? blossfeldiana varieties with orange, pink, red and magenta flowers were found to contain 3,5-O-beta-D-diglucosides of pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin. Pink, red and magenta varieties contained relatively high amounts of quercetin based flavonols. Four distinct quercetin flavonols were identified, namely quercetin 3-O-beta-D-glucoside and three that were quercetin 3-O-alpha-L-rhamnoside based, with either glucose, xylose or arabinose attached to position 2 of the rhamnose. In addition, the presence of at least three kaempferol based diglycosides was suggested from LC-MS analyses. Orange varieties contained very low amounts of flavonol co-pigments and of delphinidin derivatives. The flower extracts of the varieties 'Diva' (magenta) and 'Molly' (red) had identical anthocyanin ratios but differed significantly in flavonol content. The magenta variety contained four times as much quercetin relative to anthocyanidin as the red variety. This difference was mainly due to a larger content of quercetin 3-O-(2'-O-beta-D-glucopyranosyl-alpha-L-rhamnopyranoside). Based on pigment and co-pigment analyses, approaches for molecular breeding towards blue flower colour are discussed.  相似文献   

2.
In order to optimize shoot regeneration in Kalancho? blossfeldiana, leaf and internode explants of seven cultivars including one inter-specific were studied. The effects of various combinations of α-naphthalene acetic acid (NAA) (0, 0.57 M) and thidiazuron (TDZ) (0, 0.45, 4.5, 22.5, 67.5 μM) on MS medium were examined. In all cultivars shoot regeneration frequency and number of shoots per explant were enhanced by increasing TDZ concentration. Supplementing the media with NAA did not improve shoot regeneration. Maximum regeneration frequency and optimum concentration of TDZ for shoot regeneration depended significantly on the cultivar. Internode explants, but not leaf explants, of some cultivars, were able to produce adventitious shoots without treatment with growth regulator.  相似文献   

3.
Ota K 《Plant physiology》1988,87(2):454-457
Kalanchoë blossfeldiana Poelln. cv Hikan plants were grown hydroponically with nutrient solution containing 5 millimolar NO3 (or NH4+) for 1 to 2 months and then transferred to nutrient solution containing no nitrogen. CO2 uptake at night, nocturnal increase in titratable acidity, and activity of phosphoenolpyruvate carboxylase increased after the transfer. Thus, transfer to nitrogen-deficient conditions stimulates Crassulacean acid metabolism (CAM photosynthesis) in K. blossfeldiana. The importance of the plant nitrogen status (nitrogen-withdrawal status) for induction and stimulation of CAM photosynthesis is discussed.  相似文献   

4.
Differential display of mRNA from four sets of contrasting phenotypes were carried out in order to identify and isolate genes associated with elongating growth of Kalanchoë blossfeldiana. A total of 17 unique differential expressed cDNA fragments were sequenced and 12 showed homology to genes in other plant species. Three genes were subsequently tested for growth related activity by Virus Induced Gene Silencing (VIGS) in Nicotiana benthamiana. One gene fragment (13C) resulted in plants with significantly reduced growth (N = 20, P = 0.05, one-tailed students t-test) from day 25 after virus infection. Full-length cDNA and genomic DNA sequences were obtained by inverse PCR and thermal asymmetric interlaced (TAIL) PCR and the gene was named KbORF1. The predicted gene is 2244 bp long with three exons of 411 bp in total encoding a protein of 137 amino acid residues with homologs widespread among plants. The protein has no known function, but its expression has been confirmed in a proteomic study of Arabidopsis. Southern blot analysis shows two hybridizing fragments in agreement with the tetraploid nature of K. blossfeldiana. Fragment 13C comprises 446 bp of the gene, and the portion of 13C conferring growth retardation by VIGS is located 10 bp into the second intron indicating a regulatory function of this part of the KbORF1 mRNA. Differential display in combination with VIGS as a screening method proved to be a good functional approach not only to search for genes of interest, but also to isolate expressed genetic regulatory domains.  相似文献   

5.
6.
Two brief red (R) irradiations, separated by 24 hours, given to Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds, made secondarily dormant by a prolonged dark incubation period on water and transferred to GA3, induce very low germination. Some effect of these irradiations is preserved, however, during a long dark interval in fully imbibed seeds and greatly increases the germination induced by another brief R exposure. This long-lasting light effect is, at 20°C, only lost after a dark interval of about 1 month. It can also be induced by two brief far-red (FR) exposures. Its preservation is temperature-dependent, low temperatures being favorable. Light-induced changes in the ATP-content were demonstrated during preservation and expression of the long-lasting light effect, indicating a long-lasting metabolic change. In seeds with primary dormancy sown on GA3, an analogous long-lasting light effect is induced by one or two brief R or FR irradiations, even when they are given before germination can take place. The presence of GA3, which was shown to induce a very low fluence germination response in Kalanchoë seeds, is required for the occurrence of the long-lasting light effect. The data suggest long-term preservation of some effect(s) of Pfr rather than persistent presence of Pfr itself.  相似文献   

7.
8.
9.
In Kalanchoë blossfeldiana cv. Tom Thumb the initial rate of ATP-dependent H+-transport into tonoplast vesicles was stimulated up to three times if the H+-ATPase (EC 3.6.1.3) was energized a few minutes after pre-energization of the H+-PPase (EC 3.6.1.1). H+-PPase-activated ATP-dependent H+-transport was observed in plants of K. blossfeldiana cultivated in short day (SD) or long day (LD) conditions expressing different degrees of crassulacean acid metabolism (CAM). However, based on the higher activity and protein amount of H+-PPase and H+-ATPase present in the vacuolar membrane of SD plants the maximum H+-transport activity in the stimulated mode of the H+-ATPase was significantly higher in tonoplast vesicles of SD plants than of LD plants. Hence, a co-ordinated action of the H+-PPase and H+-ATPase at the tonoplast of Kalanchoë could allow a higher transport capacity at the vacuolar membrane when plants perform high CAM. Immunoprecipitation experiments with an antiserum raised against the A-subunit of the vacuolar H+-ATPase of Mesembryanthemum crystallinum L. showed that in SD and LD plants of K. blossfeldiana the H+-PPase was co-precipitated with the vacuolar H+-ATPase holoenzyme. The co-percipitation of the two transport proteins indicates a close structural localization of the H+-PPase and the A-subunit of the vacuolar H+-ATPase.  相似文献   

10.
N. Schilling  P. Dittrich 《Planta》1979,147(3):210-215
The degradation of starch by a protein fraction of Kalanchoë daigremontiana Hamet et Perrier, obtained by ammoniumsulfate precipitation (30–70%), was found to be catalyzed by -and -amylase (EC 3.2.1.1 and EC 3.2.1.2, respectively) and by starch phosphorylase (EC 2.4.1.1). The activity of these enzymes was determined by chromatographic analysis of the reaction products; separation and identification of -amylase was accomplished by heat-inactivation of -amylase and -glucosidase. When the interaction of amylolytic and phosphorolytic enzymes was comparatively studied, it was found that without inorganic phosphorus in the reaction mixture, 14C-starch was converted predominantly to maltose and glucose; supplementation with 1–10 mM orthophosphate (Pi) resulted in an increase in glucose-1-phosphate formation and a concomitant reduction of maltose production. Since the total volume of starch degradation remained approximately constant, Pi apparently inhibits -amylase (Ki about 3 mM Pi). Thus, free Pi in the cell participates in the regulation of starch catabolism, serving as a substrate for starch phosphorylase while simultaneously reducing the production of maltose. With respect to glucan synthesis, adenosinediphosphoglucose--1,4-glucosyltransferase (EC 2.4.1.22), maltose phosphorylase and maltoseglucosyltransferase were also found to be active. The last-named enzyme catalyzes an exchange between dextrins and is considered to provide primer carbohydrates for the synthesis of polyglucans.Abbreviations ADPG adenosinediphosphoglucose - G1P glucose-1-phosphate - PEG polyethylenglycol - PEP phosphoenolpyruvate - Pi orthophosphate  相似文献   

11.
Rustin P  Lance C 《Plant physiology》1986,81(4):1039-1043
The mechanisms and the controlling factors of malate oxidation by mitochondria from leaves of Kalanchoë blossfeldiana Poelln. plants performing Crassulacean acid metabolism were investigated using Percollpurified mitochondria. The effects of pH and of various cofactors (ATP, NAD+, coenzyme A) on malate dehydrogenase (EC 1.1.1.37) and malic enzyme (EC 1.1.1.39) solubilized from these mitochondria were examined. The crucial role of cofactor concentrations in the mitochondrial matrix on the pathways of malate oxidation is shown. The distribution of the electrons originating from malate between the different electron transport pathways and its consequence on the phosphorylation yield was studied. It was found that, depending on the electron transport pathway used, malate oxidation could yield from 3 to 0 ATP. Assayed under conditions of high reducing power and high energy charge, the ability of malic enzyme to feed electrons to the cyanide-resistant nonphosphorylating alternative pathway was found to be higher than that of other dehydrogenases linked to the functioning of the Krebs cycle (pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase). The physiological significance of such a functional relationship between malic enzyme activity and the nonphosphorylating alternative pathway is discussed in relation to Crassulacean acid metabolism.  相似文献   

12.
Following electro-fusion of plant protoplasts the volume of the fused cell is the sum of the volumes of the parent cells. As shown for mesophyll protoplasts from leaves of Kalanchoë daigremontiana, the excess in membrane material arising from the reduction in membrane area is removed-at least to a larger extent — by the formation of vesicles which are visible in the light microscope. These vesicles, which may have been formed by the fusion of sub-microscopic vesicles, are observed in the contact zone of the fusing cells. The mechanism of the formation of vesicles during electro-fusion is discussed.  相似文献   

13.
Chang NK 《Plant physiology》1981,68(2):464-468
The enzymes necessary to assimilate ammonia either via glutamine synthetase and glutamate synthase or via the glutamate dehydrogenase pathways are present in both green and white leaf tissues of Kalanchoë fedtschenkoi. Nitrate reductase activity develops to a maximum in a Crassulacean acid metabolism (CAM) plant canopy before either ribulose 1,5-bisphosphate carboxylase, or phosphoenolpyruvate carboxylase, or CAM. Nitrate reductase also is activated each morning and is inactivated late in the day as in other plants. However, there does not appear to be any direct relationship between nitrate reductase activity and the level of acid, its daily pattern or the amplitude of CAM. Though nitrate reductase is activated maximally each day by light, in Kalanchoë leaves for six days the activity followed a precise daily pattern independent of continuous light or dark.  相似文献   

14.
Malate efflux from leaf cells of the Crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier was studied using leaf slices submerged in experimental solutions. Leaves were harvested at the end of the dark phase and therefore contained high malate levels. Water potentials of solutions were varied between 0 and −5 bar using mannitol (a slowly permeating solute) and ethylene glycol (a rapidly permeating solute), respectively. Mannitol solutions of water potentials down to −5 bar considerably reduced malate efflux. The slowly permeating solute mannitol reduces both water potential and turgor potential of the cells. The water potential of a mannitol solution of −5 bar is just above plasmolyzing concentration. Malate efflux in ethylene glycol at −5 bar was only slightly smaller than at 0 bar, and much higher than in mannitol at −5 bar. Tissues in rapidly permeating ethylene glycol would have turgor potentials similar to tissues in 0.1 mm CaSO4. The results demonstrate that malate efflux depends on turgor potential rather than on water potential of the cells.  相似文献   

15.
Kalancho? pinnata (Lam.) Pers. (Crassulaceae), a succulent-leaved crassulacean-acid-metabolism plant, was grown in open-top chambers at ambient and elevated (two times ambient) CO2 concentrations under natural conditions at the Smithsonian Tropical Research Institute, Republic of Panama. Nocturnal increase in titratable acidity and nocturnal carbon gain were linearly related, increased with leaf age, and were unaffected by CO2 treatments. However, under elevated CO2, dry matter accumulation increased by 42–51%. Thus, the increased growth at elevated CO2 was attributable entirely to increased net CO2 uptake during daytime in the light. Malic acid was the major organic acid accumulated overnight. Nocturnal malate accumulation exceeded nocturnal citrate accumulation by six-to eightfold at both CO2 concentrations. Basal (predawn) starch levels were higher in leaves of plants grown at elevated CO2 but diurnal fluctuations of starch were of similar magnitude under both ambient and elevated CO2. In both treatments, nocturnal starch degradation accounted for between 78 and 89% of the nocturnal accumulation of malate and citrate. Glucose, fructose, and sucrose were not found to exhibit marked day-night fluctuations. Received: 4 March 1996 / Accepted: 25 May 1996  相似文献   

16.
Gas exchange in K. blossfeldiana shows a circadian rhythm in net CO2 uptake and transpiration when measured under low and medium irradiances. The period length varies between 21.4 h at 60 W m-2 and 24.0 h at 10 W m-2. In bright light (80 W m-2) or darkness there are no rhythms. High leaf temperatures result in a fast dampening of the CO2-uptake rhythm at moderate irradiances, but low leaf temperatures can not overcome the dampening in bright light. The rhythm in CO2 uptake is accompanied by a less pronounced and more rapidly damped rhythm in transpiration and by oscillations in malate levels with the amplitude being highly reduced. The oscillations in starch content, usually observed to oscillate inversely to the acidification in light-dark cycles, disappear after the first cycle in continuous light. The balance between starch and malate levels depends in continuous light on the irradiance applied. Leaves show high malate and low starch content at low irradiance and high starch and low malate in bright light. During the first 12 h in continuous light replacing the usual dark period, malate synthesis decreases with the increasing irradiance. Up to 50 W m-2 starch content decreases; at higher irradiances it increases above the values usually measured at the end of the light period of the 12:12 h light-dark cycle.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEP phosphoenolpyruvate  相似文献   

17.
18.
In a study with the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perr. using the pressure probe, Rygol et al. (1987, Planta 172, 487–4493) calculated a value for the reflection coefficient () for malate of 0.6. This value was derived from the relationship between measured changes in cell turgor pressure and malic-acid concentration, and would imply that malate was a relatively ineffective osmoticum. Here we show that the calculation of Rygol et al. (1987) involved the implicit assumption that xylem tension was constant with changing cell turgor pressure and osmotic pressure. This has been shown not to be the case using the pressure-chamber technique. We present an alternative method of deriving a weighted-mean value of a for K. daigremontiana and show that it is not significantly different from 1.0.Part of this work was carried out at the University of Edinburgh, to whom we are grateful for facilities, with funding from the Agricultural and Food Research Council, UK. Murphy is grateful to the board of management of the Glasstone Benefaction for financial support at the University of Oxford. We thank Prof. U. Zimmermann for his comments on an earlier version of this paper.  相似文献   

19.
20.
To investigate the responses of castor bean to repeated drying–wetting cycles (RDWC), morpho-physiological parameters of two cultivars (Jiaxiang 2 and Hangbi 8) were determined by a pot experiment under well-watered control and RDWC. RDWC inhibited plant growth and leaf development, decreased water loss rate (WLR), and enhanced leaf mass per area (LMA) and chlorophyll content as indicated by spectral reflectance indices for both cultivars. Photosynthesis was inhibited by progressive drought stress but quickly recovered after rewatering for each cycle. Both cultivars exhibit a similar pattern of acclimation to RDWC: (1) higher LMA and lower WLR, (2) increased photosynthetic capacity under drought stress with increasing cycle numbers, (3) quick recovery and over-compensation for photosynthesis after rewatering, and (4) increased chlorophyll content. Jiaxiang 2 shows a high capacity for water preservation under drought stress and an over-compensation for photosynthesis after rewatering compared with Hangbi 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号