首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对吐鲁番沙漠植物园中自然分布的疏叶骆驼刺〔Alhagisparsifolia (B .KelleretShap .)Shap .〕的物候进行了 5a连续的观测 ,编绘了物候图谱。运用主成分分析方法 ,对影响疏叶骆驼刺物候的温度和光照因子进行了分析 ,揭示出与其主要物候期关系最为密切的气象因子 ,表明不同的物候期 ,诱导物候表现的主导因子不同 :诱导疏叶骆驼刺萌动期的主要气象因子为旬均最高温、旬均最低温和累计日照时数 ;诱导开花期的主要气象因子为≥ 5℃积温、花期平均日照长度和盛期旬均温 ;诱导果熟期最主要的环境因子有始熟旬均温、累积日照时数和全熟旬均温。  相似文献   

2.
在塔克拉玛干沙漠南缘策勒绿洲,对人工控制地下水埋深条件下的骆驼刺幼苗地上和地下部分的生长特性进行了一个生长季的调查.结果表明:1)幼苗的株高、分枝数、冠幅与不同地下水埋深之间存在较好的相关性,不同地下水埋深下幼苗叶片数的波动较大;2)生长在距地下水埋深为2.5和2.0 m及1.5和1.0 m条件下的骆驼刺幼苗的基径变化没有显著差异(P>0.05);3)地下水埋深对骆驼刺幼苗根系的垂直根长的影响显著(P<0.01);4)不同土壤深度的根生物量、根质量密度、比根长、根表面积对地下水埋深变化的响应也有显著差异(P<0.05).  相似文献   

3.
骆驼刺(Alhagi sparsifolia Shap.)是新疆民间常用药用植物。为了解骆驼刺内生菌的多样性,获得骆驼刺的内生菌资源,本实验在新疆维吾尔克拉玛依盐碱戈壁(北纬45°16’,东经85°2’)采集骆驼刺。利用常规平板分离方法进行植物内生菌菌株的分离、培养,测定菌株16S r DNA基因序列,并结合系统发育分析进行鉴定。从骆驼刺中共分离到可培养内生菌50株,分属于葡萄球菌属(Staphylococcus)、芽胞杆菌属(Bacillus)、芽胞八叠球菌属(Sporosarcina)、微杆菌属(Exiguobacterium)、气球菌属(Aerococcus)、巨型球菌属(Macrococcus)、多米杆菌(Domibacillus)、巴尔加瓦菌属(Bhargavaea)、微球菌属(Micrococcus)、棒杆菌属(Corynebacterium)、考克菌属(Kocuria)、细杆菌属(Microbacterium)、副球菌属(Paracoccus)、马西利亚菌属(Massilia)和耐辐射球菌属(Deinococcus)15个菌属。其中葡萄球菌属占绝对优势,其次为芽胞杆菌属,为环境和植物当中广泛存在的菌属,分离获得的其他细菌与骆驼刺生长环境(盐渍化严重,高辐射)有关,内生菌多样性与骆驼刺在新疆干旱、寒冷、盐碱土壤环境中的适应性机制具有密切的联系。  相似文献   

4.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

5.

Key message

Alhagi sparsifolia Sharp. is commonly considered as a type of sun plant, but shade-grown plants cannot acclimate to the strong irradiance which is normal for plant in a short time when kept in low-light conditions for a while.

Abstract

Alhagi sparsifolia Sharp., commonly considered as a type of sun plant, is the main vegetation found in the forelands of Taklamakan desert; this plant has an important function in wind prevention and sand fixation at the transition zone. A. sparsifolia could adapt to shaded conditions after a period of exposure to low-light conditions. However, whether or not the sun plant A. sparsifolia can adapt to natural light intensity after initial exposure to shaded conditions remains unknown. The specific light adaptation mechanism of this species is yet to be identified. In this study, the characteristics of the photosystem II (PSII) of A. sparsifolia exposed to natural light after the initial treatment under shaded lighting conditions were examined. Our results indicated that the PSII activity of A. sparsifolia under the specified condition was low; the thickness of leaves was reduced and occurred as an adaptive response to capture high amounts of light and exhibit high intensity of light-use efficiency. Shade leaves differed in terms of chlorophyll. Furthermore, the excess excitation energy has been converted to thermal dissipation energy to maintain energy balance. Shade-grown plants cannot adapt to strong irradiance, which is normal in plants for a short period when they are initially maintained under low-light conditions. Therefore, A. sparsifolia should not be considered as a typical sun plant.  相似文献   

6.
During the period of senescence of desert plant Alhagi sparsifolia Shap. the maximum photochemical quantum yield measured as variable to maximum fluorescence ratio (Fv/Fm) remained relatively high, although the number of active reaction centres per cross section (RCs) decreased significantly. The efficiency of electron acceptors beyond the primary quinone acceptor (QA) decreased. The effect of temperature and irradiance on photosystem activity was maximum after 6 d. Our results suggest that: 1) the down-regulation of photosystem activity was due to the decline of both RCs and electron acceptance between plastoquinone (PQ) and cytochrome (cyt) b6/f; 2) photosystem activity presented negative correlation with daily mean temperature, and 3) reduction of daily sunshine period and increase of temperature at noon can stimulate the speed of senescence.  相似文献   

7.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

8.
Photosystem II (PSII) activity was examsined in leaves of chilling-sensitive cucumber ( Cucumis sativus L.), tomato ( Lycopersicum esculentum L.), and maize ( Zea mays L.), and in chilling-tolerant barley ( Hordeum vulgare L.) illuminated with moderate white light (300 µmol m−2 s−1) at 4°C using chlorophyll a fluorescence measurements. PSII activity was inhibited in leaves of all the four plants as suggested by the decline in F v/ F m, 1/ F o − 1/ F m, and F v/ F o values. The changes in initial fluorescence level ( F o), F v/ F m, 1/ F o − /1/ F m, and F v/ F o ratios indicate a stronger PSII inhibition in cucumber, maize and tomato plants. The kinetics of chlorophyll a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by photoinhibition. The selective suppression of the J-I phase of fluorescence rise kinetics provides evidence for weakened electron donation from the oxidizing side, whereas the accumulation of reduced QA suggests damage to the acceptor side of PSII. These findings imply that the process of chilling-induced photoinhibition involves damage to more than one site in the PSII complexes. Furthermore, comparative analyses of the decline in F v/ F o and photooxidation of P700 explicitly show that the extent of photoinhibitory damage to PSII and photosystem I is similar in leaves of cucumber plants grown at a low irradiance level.  相似文献   

9.
Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kΔx, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(−kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(−kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(−kx), the quantum yield of photoinactivation of PS II can be defined as −dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1μmol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 107 photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.  相似文献   

10.
Green leaves illuminated with photosynthetically active light emit red fluorescence, whose time-dependent intensity variations reflect photosynthetic electron transport (the Kautsky effect). Usually, fluorescence variations are discussed by considering only the contribution of PSII-associated chlorophyll a, although it is known that the fluorescence of PSI-associated chlorophyll a also contributes to the total fluorescence [Aust. J. Plant Physiol. 22 (1995) 131]. Because the fluorescence emitted by each photosystem cannot be measured separately by selecting the emission wavelength in in vivo conditions, the contribution of PSI to total fluorescence at room temperature is still in ambiguity. By using a diode array detector, we measured fluorescence emission spectra corresponding to the minimal (F(O)) and maximal (F(M)) fluorescence states. We showed that the different shapes of these spectra were mainly due to a higher contribution of PSI chlorophylls in the F(O) spectrum. By exciting PSI preferentially, we recorded a reference PSI emission spectrum in the near far-red region. From the F(O) and F(M) spectra and from this PSI reference spectrum, we derived specific PSI and PSII emission spectra in both the F(O) and F(M) states. This enables to estimate true value of the relative variable fluorescence of PSII, which was underestimated in previous works. Accurate separation of PSI-PSII fluorescence emission spectra will also enable further investigations of the distribution of excitation energy between PSI and PSII under in vivo conditions.  相似文献   

11.
对塔克拉玛干沙漠--绿洲过渡带骆驼刺(Alhagi sparsifolia Shap.)水分关系的研究表明:骆驼刺在夏季保持了正的膨压,一直较高较稳定的清晨水势说明植物水分恢复状况良好,植物得到了较好的水分供应;在7月,干旱胁迫造成的水分亏缺并未影响植株正常的蒸腾作用,因而干旱引起的水分胁迫并未威胁到植被的存在.骆驼刺对干旱胁迫的水分生理适应主要体现在叶水平上,表现为饱和枝条的渗透势(Πo)和膨压消失点的渗透势(Πp)的差值(ΔΠ)和相对含水量(RWC)在膨压消失点间更大的变化、渗透调节的产生、较高较稳定的饱和枝条水分与干物质之比(WCsat)和膨压消失点的相对含水量(RWCp),以及较低的共质体水在总水分中的相对含量(RWCsym).但形态学上的特征,主要表现为深而发达的根系和蒸腾面积的减少,才是骆驼刺适应极端干旱环境的主要途径.非定期的夏季一次性灌溉对地下水位很低地区的骆驼刺植被水分状况的恢复没有帮助.  相似文献   

12.
Attached leaves of pumpkin ( Cucurbita pepo L. cv. Jattiläismeloni) were exposed to high light intensity at room temperature (ca 23°C) and at 1°C. Fluorescence parameters and electron transport activities measured from isolated thylakoids indicated faster photoinhibition of PSII at low temperature. Separation of the α and β components of the complementary area above the fluorescence induction curve of dichlorophenyl-dimethylurea-poisoned thylakoids revealed that at low temperature only the α-centers declined during exposure to high light intensity while the content of functional β-centers remained constant. Freeze-fracture electron microscopy showed no decrease in the density of particles on the appressed exoplasmic fracture face, indicating that the photoinhibited α-centers remained in the appressed membranes at 1°C. Because of the function of the repair and protective mechanisms of PSII, strong light induced less photoinhibition at room temperature, but more complicated changes occurred in the α/β-heterogeneity of PSII. During the first 30 min at high light intensity the decrease in α-centers was almost as large as at 1°C, but in contrast to the situation at low temperature the decrease in α-centers was compensated for by a significant increase in PSIIβ-centers. Changes in the density and size of freeze-fracture particles suggest that this increase in β-centers was due to migration of phosphorylated light-harvesting complex from appressed to non-appressed thylakoid membranes while the PSII core remained in the appressed membranes. This situation, however, was only transient and was followed by a rapid decrease in the functionalβ-centers.  相似文献   

13.
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (P N) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in P N was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of P N under 35°C.  相似文献   

14.
生长在温带沙漠地区的植物在夏季时常遭受正午短时间的高温胁迫, 频繁和骤然的热胁迫在很大程度上限制了荒漠植物的光合作用。以塔克拉玛干沙漠南缘防风固沙的优势植物疏叶骆驼刺(Alhagi sparsifolia)为材料, 分别用叶绿素荧光诱导动力学和CO2响应方法分析热胁迫后光系统II (PSII)和RuBP羧化酶的热稳定性。结果表明: (1)在叶片温度超过43 ℃后PSII最大光化学量子产量、有活性反应中心数目、活力指数均出现明显的降低; 中高温度下PSII的电子供体侧比电子受体侧组分更容易受到热胁迫的伤害; 在58 ℃出现明显的K点(300 μs), 说明放氧复合体放氧结构受到破坏而失去活性。(2)随着叶片温度的上升, Rubisco活性先升高后降低, 在34 ℃时具有最高的活性水平。(3)叶片受到高温胁迫时, 细胞内氨态氮和活性氧分子等大量积累。(4)疏叶骆驼刺叶片处于短时间的高温环境时, 光合作用的光反应和暗反应阶段均表现出功能的不稳定性, 其中PSII和Rubisco是主要的热敏感位点。  相似文献   

15.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

16.
塔干南缘骆驼刺植被水分关系的研究   总被引:12,自引:0,他引:12  
对塔克拉玛干沙漠———绿洲过渡带骆驼刺 (AlhagisparsifoliaShap .)水分关系的研究表明 :骆驼刺在夏季保持了正的膨压 ,一直较高较稳定的清晨水势说明植物水分恢复状况良好 ,植物得到了较好的水分供应 ;在 7月 ,干旱胁迫造成的水分亏缺并未影响植株正常的蒸腾作用 ,因而干旱引起的水分胁迫并未威胁到植被的存在。骆驼刺对干旱胁迫的水分生理适应主要体现在叶水平上 ,表现为饱和枝条的渗透势 (Πo)和膨压消失点的渗透势 (Πp)的差值 (ΔΠ)和相对含水量 (RWC)在膨压消失点间更大的变化、渗透调节的产生、较高较稳定的饱和枝条水分与干物质之比 (WCsat)和膨压消失点的相对含水量 (RWCp) ,以及较低的共质体水在总水分中的相对含量 (RWCsym)。但形态学上的特征 ,主要表现为深而发达的根系和蒸腾面积的减少 ,才是骆驼刺适应极端干旱环境的主要途径。非定期的夏季一次性灌溉对地下水位很低地区的骆驼刺植被水分状况的恢复没有帮助。  相似文献   

17.
Sunflower (Helianthus annuus L.) and tobacco (Nicotiana tabacum L.) were grown in the laboratory and leaves were taken from field-grown birch trees (Betula pendula Roth). Chlorophyll fluorescence, CO2 uptake and O2 evolution were measured and electron transport rates were calculated, J(C) from the CO2 uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O2 evolution rate, and J(F) from Chl fluorescence parameters. Mesophyll diffusion resistance, r(md), used for the calculation of J(C), was determined such that the in vivo Rubisco kinetic curve with respect to the carboxylation site CO2 concentration became a rectangular hyperbola with Km(CO2) of 10 microM at 22.5 degrees C. In sunflower, in the absence of external O2, J(O) = 1.07 J(C) when absorbed photon flux density (PAD) was varied, showing that the O2-independent components of the alternative electron flow to acceptors other than CO2 made up 7% of J(C). Under saturating light, J(F), however, was 20-30% faster than J(C), and J(F)-J(C) depended little on CO2 and O2 concentrations. The inter-relationship between J(F)-J(C) and non-photochemical quenching (NPQ) was variable, dependent on the CO2 concentration. We conclude that the relatively fast electron flow J(F)-J(C) appearing at light saturation of photosynthesis contains a minor component coupled with proton translocation, serving for nitrite, oxaloacetate and oxygen reduction, and a major component that is mostly cyclic electron transport around PSII. The rate of the PSII cycle is sufficient to release the excess excitation pressure on PSII significantly. Although the O2-dependent Mehler-type alternative electron flow appeared to be under the detection threshold, its importance is discussed considering the documented enhancement of photosynthesis by oxygen.  相似文献   

18.
骆驼刺在不同遮阴下的水分状况变化及其生理响应   总被引:4,自引:0,他引:4       下载免费PDF全文
为了研究骆驼刺(Alhagi sparsifolia)在不同遮阴环境下的生理适应性, 以塔克拉玛干沙漠南缘策勒绿洲外围骆驼刺为试验材料, 设置正常光照、中度遮阴(70%自然光)、重度遮阴(30%自然光) 3种光照环境, 观测了遮阴90天后土壤含水率, 骆驼刺水势、气孔导度(Gs)、叶形态、叶绿素(Chl)含量、脯氨酸(Pro)含量、丙二醛(MDA)含量、可溶性糖含量等在不同遮阴条件下的变化特征。结果显示: 随着遮阴强度的增大, 土壤含水率, 骆驼刺水势、Gs、比叶面积、Chl含量、类胡萝卜素含量有一定程度的增加; 骆驼刺叶片厚度、Pro含量、MDA含量、可溶性糖含量以及Chl a/Chl b有不同幅度的减少。结果表明: 一段时间内适度的遮阴在一定程度上降温增湿, 能够改善骆驼刺的生境, 从而避免高温强光和低水势对植物造成的伤害, 促进植物的生长, 但长期遮阴对植物的生长不利。因此建议通过短期的遮阴, 特别是在温度较高、光照较强的夏季正午前后对骆驼刺进行遮阴处理, 以达到对骆驼刺的逆境防护, 促进骆驼刺的生长。  相似文献   

19.
疏叶骆驼刺根系对土壤异质性和种间竞争的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。  相似文献   

20.
以塔克拉玛干沙漠南缘典型荒漠豆科植物骆驼刺(Alhagi sparsifolia)和菊科植物花花柴(Karelinia caspia)为对象,研究单一骆驼刺种群(LTC)、单一花花柴种群(HHC)及骆驼刺-花花柴群落(GSQL)中植物及土壤中碳(C)、氮(N)、磷(P)、钾(K)等养分的生态化学计量学特征。结果表明:骆驼刺-花花柴群落中土壤有效N(AN)、有效K(AK)含量及N∶P、N∶K显著高于单一花花柴种群;骆驼刺-花花柴群落中花花柴叶片的全N含量显著高于单一花花柴种群,骆驼刺-花花柴群落中骆驼刺叶片的全P含量显著高于单一骆驼刺种群。相关性分析显示:不同生境土壤的AK含量与N∶P及AN含量呈显著正相关,而与SOC呈负相关;不同生境下叶片中的全K含量与SOC、全N、全P含量呈显著正相关,叶片中的全N含量与SOC、全P亦呈显著正相关,而N∶P与SOC、全P含量呈显著负相关;土壤中SOC含量与叶片中全P、全K含量呈正相关,而与N∶K呈负相关;土壤有效N含量与叶片N∶K呈正相关,而与叶片4种元素含量均呈显著负相关;土壤有效K含量与叶片中4种元素含量均呈显著负相关,而与叶片N∶K呈正相关;土...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号