首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive incompatibilities called cytoplasmic incompatibilities are known to affect a large number of arthropod species and are mediated by Wolbachia, a maternally transmitted microorganism. The crossing relationships between strains of potential hosts define their incompatibility types and it is generally assumed that differences between strains of Wolbachia induce different crossing types. Among all the described host species, the mosquito, Culex pipiens, displays the greatest variability of cytoplasmic incompatibility crossing types. We analysed mitochondrial and bacterial DNA variability in Culex pipiens in order to investigate some possible causes of incompatibility crossing type variability. We sequenced fragments of the ftsZ gene, and the A + T-rich control region of the mtDNA. We also sequenced the second subunit of the mitochondrial cytochrome oxidase (COII) gene, in Culex pipiens and a closely related species, C. torrentium, in order to verify the usefulness of the A + T-rich region for the present purposes. No variability was found in the Wolbachia ftsZ gene fragment, and very limited variation of the mitochondrial marker whatever the compatibility type or the origin of the host. A low variability was found in the A + T-rich region and comparison of divergence of the A + T-rich region and COII gene between C. pipiens and C. torrentium did not reveal any special constraints affecting this region. In contrast to observations in other host species, variability of incompatibility crossing types is not due to multiple infections by distantly related Wolbachia strains.  相似文献   

2.
Wolbachia is a group of maternally inherited endosymbiotic bacteria that infect and induce cytoplasmic incompatibility (CI) in a wide range of arthropods. In contrast to other species, the mosquito Culex pipiens displays an extremely high number of CI types suggesting differential infection by multiple Wolbachia strains. Attempts so far failed to detect Wolbachia polymorphism that might explain this high level of CI diversity found in C. pipiens populations. Here, we establish that Wolbachia infection is near to or at fixation in worldwide populations of the C. pipiens complex. Wolbachia polymorphism was addressed by sequence analysis of the Tr1 gene, a unique transposable element of the IS5 family, which allowed the identification of five C. pipiens Wolbachia strains, differing either by nucleotide substitution, presence or absence pattern, or insertion site. Sequence analysis also showed that recombination, transposition and superinfection occurred at very low frequencies. Analysis of the geographical distributions of each Wolbachia strain among C. pipiens populations indicated a strong worldwide differentiation independent from mosquito subspecies type, except in the UK. The availability of this polymorphic marker now opens the way to investigate evolution of Wolbachia populations and CI dynamics, in particular in regions where multiple crossing types coexist among C. pipiens populations.  相似文献   

3.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

4.
Wolbachia bacteria in mosquitoes induce cytoplasmic incompatibility (CI), where sperm from Wolbachia-infected males can produce inviable progeny. The wPip strain in the Culex pipiens group of mosquitoes produces a complexity of CI crossing types. Several factors are thought to be capable of influencing the expression of CI including Wolbachia strain type and host genotype. In this study, the unidirectional CI that occurs between 2 C. pipiens complex laboratory strains, Col and Mol, was further investigated by nuclear genotype introgression. The unidirectional CI between Col and Mol was not found to be influenced by host genetic background, in contrast to a previous introgression study carried out using bidirectionally incompatible C. pipiens group strains. A line containing both wPip strain variants superinfection was also generated by embryonic cytoplasmic transfer. The same crossing type as the parental Col strain was observed in the superinfected line. Quantitative polymerase chain reaction demonstrated a low density of the injected wPipMol variant in the superinfected line after 18 generations, which was considered likely to be responsible for the crossing patterns observed. The Wolbachia density was also shown to be lower in the parental Mol strain males compared with Col strain males, and no inverse relationship between WO phage and Wolbachia density could be detected.  相似文献   

5.
Maternally inherited variants, which arose within a laboratory colony of Culex pipiens fatigans, have been studied by rearing cultures from single egg rafts. Segregation, i.e, variation of cytoplasmic incompatibility properties between the male progeny of individual females, was demonstrated. Also, from the daughters of individual females, sub-lines were derived within which all the males showed the same incompatibility or compatibility properties. Among the descendants of tetracycline-treated individuals were lines which superficially simulated these phenomena, but theses lines ultimately reverted to the cytoplasmic compatibility type of the strain which was submitted to the treatment. The types of variation s in cytoplasmic incompatibility properties that have been studied are discussed.  相似文献   

6.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI), resulting in abortive embryonic development. One Wolbachia host, Culex pipiens complex mosquitoes, displays high levels of variability in both CI crossing types (cytotypes) and DNA markers. We report here an analysis of 14 mosquito strains, containing 13 Wolbachia variants, and with 13 different cytotypes. Cytotypes were Wolbachia-dependent, as antibiotic treatment rendered all strains tested compatible. Cytotype distributions were independent of geographical distance between sampling sites and host subspecies, suggesting that Wolbachia does not promote a reproductive isolation depending on these parameters. Backcross analysis demonstrated a mild restoring effect of the nuclear genome, indicating that CI is mostly cytoplasmically determined for some crosses. No correlation was found between the phenotypic and genotypic variability of 16 WO prophage and transposon markers, except for the WO prophage Gp15 gene, which encodes a protein similar to a bacterial virulence factor. However, Gp15 is partially correlated with CI expression, suggesting that it could be just linked to a CI gene.  相似文献   

7.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.  相似文献   

8.
我国蚊虫体内感染的Wolbachia的wsp基因序列测定与分析   总被引:3,自引:2,他引:1  
测定了我国尖音库蚊复合组和白纹伊蚊蚊虫体内感染的Wolbachia株的wsp基因序列。核苷酸和氨基酸的同源性及系统关系分析表明,我国尖音库蚊复合组和白纹伊蚊中Wolbachia株的wsp基因序列与Pip组其它株的核苷酸及氨基酸同源性分别为98%~100%和97%~100%, 属B大组Wolbachia中的Pip组。  相似文献   

9.
Rasgon JL  Scott TW 《Genetics》2003,165(4):2029-2038
Before maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and approximately 98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.  相似文献   

10.
Wolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism.  相似文献   

11.

Background

Vector-borne diseases remain a threat to public health, especially in tropical countries. The incompatible insect technique has been explored as a potential control strategy for several important insect vectors. However, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in China. Previous works used introgression to generate new strains that matched the genetic backgrounds of target populations while harboring a new Wolbachia endosymbiont, resulting in mating competitiveness and cytoplasmic incompatibility. The generation of these incompatible insects is often time-consuming, and the long-term stability of the newly created insect-Wolbachia symbiosis is uncertain. Considering the wide distribution of Cx. pipiens pallens and hence possible isolation of different populations, we sought to test for incompatibilities between natural populations and the possibility of exploiting these incompatibilities as a control strategy.

Methodology/Principal Findings

Three field populations were collected from three geographic locations in eastern China. Reciprocal cross results showed that bi-directional patterns of incompatibility existed between some populations. Mating competition experiments indicated that incompatible males could compete with cognate males in mating with females, leading to reduced overall fecundity. F1 offspring from incompatible crosses maintained their maternal crossing types. All three populations tested positive for Wolbachia. Removal of Wolbachia by tetracycline rendered matings between these populations fully compatible.

Conclusions/Significance

Our findings indicate that naturally occurring patterns of cytoplasmic incompatibility between Cx. pipiens pallens populations can be the basis of a control strategy for this important vector species. The observed incompatibilities are caused by Wolbachia. More tests including field trials are warranted to evaluate the feasibility of this strategy as a supplement to other control measures.  相似文献   

12.
The α-proteobacteria Wolbachia are among the most common intracellular bacteria and have recently emerged as important drivers of arthropod biology. Wolbachia commonly act as reproductive parasites in arthropods by inducing cytoplasmic incompatibility (CI), a type of conditional sterility between hosts harboring incompatible infections. In this study, we examined the evolutionary histories of Wolbachia infections, known as wPip, in the common house mosquito Culex pipiens, which exhibits the greatest variation in CI crossing patterns observed in any insect. We first investigated a panel of 20 wPip strains for their genetic diversity through a multilocus scheme combining 13 Wolbachia genes. Because Wolbachia depend primarily on maternal transmission for spreading within arthropod populations, we also studied the variability in the coinherited Cx. pipiens mitochondria. In total, we identified 14 wPip haplotypes, which all share a monophyletic origin and clearly cluster into five distinct wPip groups. The diversity of Cx. pipiens mitochondria was extremely reduced, which is likely a consequence of cytoplasmic hitchhiking driven by a unique and recent Wolbachia invasion. Phylogenetic evidence indicates that wPip infections and mitochondrial DNA have codiverged through stable cotransmission within the cytoplasm and shows that a rapid diversification of wPip has occurred. The observed pattern demonstrates that a considerable degree of Wolbachia diversity can evolve within a single host species over short evolutionary periods. In addition, multiple signatures of recombination were found in most wPip genomic regions, leading us to conclude that the mosaic nature of wPip genomes may play a key role in their evolution.  相似文献   

13.
Due to cytoplasmic inheritance, spread of maternally inherited Wolbachia symbionts can result in reduction of mitochondrial variation in populations. We examined sequence diversity of the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene in Wolbachia-infected (South Africa (SA), California and Thailand) and uninfected (SA) Culex pipiens complex populations. In total, we identified 12 haplotypes (A-L). In infected populations, 99% of individuals had haplotype K. In the uninfected SA population, 11 haplotypes were present, including K. Nuclear allozyme diversity was similar between infected and uninfected SA populations. Analysis of nuclear DNA sequences suggested that haplotype K presence in uninfected SA Cx. pipiens was probably due to a shared ancestral polymorphism rather than hybrid introgression. These data indicate that Wolbachia spread has resulted in drastic reduction of mitochondrial variability in widely separated Cx. pipiens complex populations. In contrast, the uninfected SA population is probably a cryptic species where Wolbachia introgression has been prevented by reproductive isolation, maintaining ancestral levels of mitochondrial diversity. Molecular clock analyses suggest that the Wolbachia sweep occurred within the last 47000 years. The effect of Wolbachia on mitochondrial dynamics can provide insight on the potential for Wolbachia to spread transgenes into mosquito populations to control vector-borne diseases.  相似文献   

14.
Duron O  Raymond M  Weill M 《Heredity》2011,106(6):986-993
Maternally inherited Wolbachia often manipulate the reproduction of arthropods to promote their transmission. In most species, Wolbachia exert a form of conditional sterility termed cytoplasmic incompatibility (CI), characterized by the death of embryos produced by the mating between individuals with incompatible Wolbachia infections. From a theoretical perspective, no stable coexistence of incompatible Wolbachia infections is expected within host populations and CI should induce the invasion of one strain or of a set of compatible strains. In this study, we investigated this prediction on CI dynamics in natural populations of the common house mosquito Culex pipiens. We surveyed the Wolbachia diversity and the expression of CI in breeding sites of the south of France between 1990 and 2005. We found that geographically close C. pipiens populations harbor considerable Wolbachia diversity, which is stably maintained over 15 years. We also observed a very low frequency of infertile clutches within each sampled site. Meanwhile, mating choice experiments conducted in laboratory conditions showed that assortative mating does not occur. Overall, this suggests that a large set of compatible Wolbachia strains are always locally dominant within mosquito populations thus, fitting with the theoretical expectations on CI dynamics.  相似文献   

15.
Wolbachia pipientis (wPip) is an intracellular bacterium causing cytoplasmic incompatibility in arthropods, including mosquitoes of the Culex pipiens complex. Here, we present a method useful for genotyping within the wPip group. Primers were designed using a Tandem Repeat Finder program to amplify an intergenic, polymorphic site (pp-hC1A_5) of wPip. The polymorphic site is located between genes that code for polynucleotide phosphorylase and a hypothetical protein (C1A_5). Comparison of these wPip genomic regions from C. pipiens mosquitoes sampled in different geographic regions revealed deletions of fragments that proved useful in phylogenetic analysis.  相似文献   

16.
17.
M. Magnin  N. Pasteur  M. Raymond 《Genetica》1987,74(2):125-130
Strains of Culex pipiens derived from natural populations collected in southern France were crossed to determine their ability to give fertile offspring. Uni- and bi-directional incompatibilities occurred between these strains and each of them had its own crossing properties. Compatibility or incompatibility of a cross seemed to be related to the geographic distance separating the parental colonies, but not to their ecological origin (hypogeous or epigeous). Our results showed evidence for the variation in time of crossing properties of a strain.  相似文献   

18.
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.  相似文献   

19.
Culex pipiens complex mosquitoes are widely distributed throughout China and are known to be important disease vectors. Two pyrethroid resistance associated mutations have been identified in Cx. pipiens complex (Diptera: Culicidae), but there is little information on the diversity and distribution of kdr alleles in pyrethroid resistance in Cx. pipiens complex mosquitoes in China. In the present study, we report on a modified three tube allele-specific (AS)-PCR method for detecting the 1014F and 1014S alleles. The new technique was applied to identify the distribution of the two alleles in natural Cx. pipiens complex populations in China. The results confirmed that the new method is both sensitive and specific. The 1014F allele was found in all 14 of the field populations tested (frequency ranged from 6.8 to 76.2%) and the 1014S allele was found in almost two-thirds (frequency from 2.4 to 28.6%), indicating that the genotypes known to be associated with pyrethroid resistance are widespread in China. The resistance-associated alleles were more common in southern Chinese sampling sites than in northern sites. The coexistence of the two resistant mutations in individual mosquitoes was also observed in five of the field populations. Two alternative mutations within the L1014 codon were identified in Culex pipiens molestus Forskal, 1775, including a non-synonymous mutation resulting in a 1014C substitution.  相似文献   

20.
不同地区库蚊复组群体的同工酶遗传多样性研究   总被引:2,自引:0,他引:2  
张柯  叶镇清  乔传令 《遗传》2004,26(2):172-176
采用水平切片淀粉凝胶电泳的方法,对分布于我国5省的8个库蚊复组(Culex pipiens complex)野生群体的遗传多样性进行研究,分析了4个酶系统7个基因座(ME、MDH-1、MDH-2、MDH-3、GPD、EST-2、EST-3)的酶谱资料。结果显示:(1)群体内存在不同程度的遗传变异(He为0.098~0.41);(2)较低的基因流水平(Nm=0.64)使遗传漂变起主要作用,造成群体之间的遗传分化(Gst=0.303),而总群体的遗传多样性相对富集于群体之内(Hs/Dst=2)。(3)库蚊群体的遗传结构属于距离隔离模式。(4)群体间的遗传一致性(或遗传距离)反映出群体间的遗传分化程度,也表明与地理位置存在对应关系。Abstract: Eight field populations of Culex pipiens complex collected from five provinces (Guangdong, Henan, Shandong, Beijing and Yunnan) in 2001 were used to study genetic diversity by starch gel electrophoresis. Data from seven loci (ME、MDH-1、MDH-2、MDH-3、GPD、EST-2、EST-3) of four isozymes were analyzed by software Biosys2.0 and FSTAT(Version 2.9.3). The results were as follows: (1) The values of He (from 0.098 to 0.41) indicated genetic variabilities of different degree in populations.(2)The low level of gene flow (Nm=0.64) could not prevent genetic drift to cause the gene differentiation between populations. The genetic diversity between populations attributed to the genetic diversity of total populations is small (Gst =0.303), and the great part is accumulated within populations (Hs/Dst=2). (3) The genetic structure of Culex pipiens complex population was the isolation-by-distance model. (4) The genetic identity (or genetic distance) revealed the scale of genetic differentiation between populations which related to the collection sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号