首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gerratana B  Cleland WW  Frey PA 《Biochemistry》2001,40(31):9187-9195
Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.  相似文献   

2.
Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in some macrolide antibiotics. In Streptomyces venezuelae, there are seven genes required for the biosynthesis of this unusual sugar. One of the genes, desIV, codes for a dTDP-glucose 4,6-dehydratase, which is referred to as DesIV. The reaction mechanisms for these types of dehydratases are quite complicated with proton abstraction from the sugar 4'-hydroxyl group and hydride transfer to NAD+, proton abstraction at C-5, and elimination of the hydroxyl group at C-6 of the sugar, and finally return of a proton to C-5 and a hydride from NADH to C-6. Here we describe the cloning, overexpression, and purification, and high resolution x-ray crystallographic analysis to 1.44 A of wild-type DesIV complexed with dTDP. Additionally, for this study, a double site-directed mutant protein (D128N/E129Q) was prepared, crystallized as a complex with NAD+ and the substrate dTDP-glucose and its structure determined to 1.35 A resolution. In DesIV, the phenolate group of Tyr(151) and O(gamma) of Thr(127) lie at 2.7 and 2.6 A, respectively from the 4'-hydroxyl group of the dTDP-glucose substrate. The side chain of Asp(128) is in the correct position to function as a general acid for proton donation to the 6'-hydroxyl group while the side chain of Glu(129) is ideally situated to serve as the general base for proton abstraction at C-5. This investigation provides further detailed information for understanding the exquisite chemistry that occurs in these remarkable enzymes.  相似文献   

3.
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-glucose and UDP-galactose during normal galactose metabolism. In humans, deficiencies in this enzyme lead to the complex disorder referred to as epimerase-deficiency galactosemia. Here, we describe the high-resolution X-ray crystallographic structures of human epimerase in the resting state (i.e., with bound NAD(+)) and in a ternary complex with bound NADH and UDP-glucose. Those amino acid side chains responsible for anchoring the NAD(+) to the protein include Asp 33, Asn 37, Asp 66, Tyr 157, and Lys 161. The glucosyl group of the substrate is bound to the protein via the side-chain carboxamide groups of Asn 187 and Asn 207. Additionally, O(gamma) of Ser 132 and O(eta) of Tyr 157 lie within 2.4 and 3.1 A, respectively, of the 4'-hydroxyl group of the sugar. Comparison of the polypeptide chains for the resting enzyme and for the protein with bound NADH and UDP-glucose demonstrates that the major conformational changes which occur upon substrate binding are limited primarily to the regions defined by Glu 199 to Asp 240 and Gly 274 to Tyr 308. Additionally, this investigation reveals for the first time that a conserved tyrosine, namely Tyr 157, is in the proper position to interact directly with the 4'-hydroxyl group of the sugar substrate and to thus serve as the active-site base. A low barrier hydrogen bond between the 4'-hydroxyl group of the sugar and O(gamma) of Ser 132 facilitates proton transfer from the sugar 4'-hydroxyl group to O(eta) of Tyr 157.  相似文献   

4.
An NAD(+)-dependent CDP-D-glucose oxidoreductase which catalyzes the first step of the biosynthesis of CDP-ascarylose (CDP-3,6-dideoxy-L-arabino-hexose), converting CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose, was isolated from Yersinia pseudotuberculosis. A protocol consisting of DEAE-cellulose, Matrex Blue-A, hydroxylapatite, DEAE-Sephadex, Sephadex G-100, and NAD(+)-agarose column chromatography was used to purify this enzyme 6000-fold to homogeneity. This enzyme consists of two identical subunits, each with a molecular weight of 42,500. Using CDP-D-glucose as the substrate, the Km and Vmax of this catalysis were determined to be 222 microM and 8.3 mumols mg-1 min-1, respectively. Unlike most other oxidoreductases of its class which have a tightly bound NAD+, this highly purified CDP-D-glucose oxidoreductase showed an absolute requirement of NAD+ for its activity. Using chemically synthesized (6S)- and (6R)-CDP-D-[4-2H,6-3H]glucose as substrates, a stereochemical analysis showed this enzymatic reaction involves an intramolecular hydrogen migration from C-4 to C-6, and the displacement of C-6 hydroxyl group by the C-4 hydrogen occurs with inversion. Thus, despite the low cofactor affinity, this enzyme undergoes a mechanism consistent with that followed by other members of its type. Such a mechanistic and stereochemical convergency found for all sugar oxidoreductases so far characterized suggests the presence of a common progenitor of this class of enzyme.  相似文献   

5.
Hegeman AD  Gross JW  Frey PA 《Biochemistry》2001,40(22):6598-6610
A model of the Escherichia coli dTDP-glucose-4,6-dehydratase (4,6-dehydratase) active site has been generated by combining amino acid sequence alignment information with the 3-dimensional structure of UDP-galactose-4-epimerase. The active site configuration is consistent with the partially refined 3-dimensional structure of 4,6-dehydratase, which lacks substrate-nucleotide but contains NAD(+) (PDB file ). From the model, two groups of active site residues were identified. The first group consists of Asp135(DEH), Glu136(DEH), Glu198(DEH), Lys199(DEH), and Tyr301(DEH). These residues are near the substrate-pyranose binding pocket in the model, they are completely conserved in 4,6-dehydratase, and they differ from the corresponding equally well-conserved residues in 4-epimerase. The second group of residues is Cys187(DEH), Asn190(DEH), and His232(DEH), which form a motif on the re face of the cofactor nicotinamide binding pocket that resembles the catalytic triad of cysteine-proteases. The importance of both groups of residues was tested by mutagenesis and steady-state kinetic analysis. In all but one case, a decrease in catalytic efficiency of approximately 2 orders of magnitude below wild-type activity was observed. Mutagenesis of each of these residues, with the exception of Cys187(DEH), which showed near-wild-type activity, clearly has important negative consequences for catalysis. The allocation of specific functions to these residues and the absolute magnitude of these effects are obscured by the complex chemistry in this multistep mechanism. Tools will be needed to characterize each chemical step individually in order to assign loss of catalytic efficiency to specific residue functions. To this end, the effects of each of these variants on the initial dehydrogenation step were evaluated using a the substrate analogue dTDP-xylose. Additional steady-state techniques were employed in an attempt to further limit the assignment of rate limitation. The results are discussed within the context of the 4,6-dehydratase active site model and chemical mechanism.  相似文献   

6.
l-Rhamnose is a 6-deoxyhexose that is found in a variety of different glycoconjugates in the cell walls of pathogenic bacteria. The precursor of l-rhamnose is dTDP-l-rhamnose, which is synthesised from glucose- 1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway requiring four enzymes. Significantly this pathway does not exist in humans and all four enzymes therefore represent potential therapeutic targets. dTDP-D-glucose 4,6-dehydratase (RmlB; EC 4.2.1.46) is the second enzyme in the dTDP-L-rhamnose biosynthetic pathway. The structure of Salmonella enterica serovar Typhimurium RmlB had been determined to 2.47 A resolution with its cofactor NAD(+) bound. The structure has been refined to a crystallographic R-factor of 20.4 % and an R-free value of 24.9 % with good stereochemistry.RmlB functions as a homodimer with monomer association occurring principally through hydrophobic interactions via a four-helix bundle. Each monomer exhibits an alpha/beta structure that can be divided into two domains. The larger N-terminal domain binds the nucleotide cofactor NAD(+) and consists of a seven-stranded beta-sheet surrounded by alpha-helices. The smaller C-terminal domain is responsible for binding the sugar substrate dTDP-d-glucose and contains four beta-strands and six alpha-helices. The two domains meet to form a cavity in the enzyme. The highly conserved active site Tyr(167)XXXLys(171) catalytic couple and the GlyXGlyXXGly motif at the N terminus characterise RmlB as a member of the short-chain dehydrogenase/reductase extended family.The quaternary structure of RmlB and its similarity to a number of other closely related short-chain dehydrogenase/reductase enzymes have enabled us to propose a mechanism of catalysis for this important enzyme.  相似文献   

7.
J S Thorson  S F Lo  O Ploux  X He    H W Liu 《Journal of bacteriology》1994,176(17):5483-5493
The 3,6-dideoxyhexoses are found in the lipopolysaccharides of gram-negative bacteria, where they have been shown to be the dominant antigenic determinants. Of the five 3,6-dideoxyhexoses known to occur naturally, four have been found in various strains of Salmonella enterica (abequose, tyvelose, paratose, and colitose) and all five, including ascarylose, are present among the serotypes of Yersinia pseudotuberculosis. Although there exists one report of the cloning of the rfb region harboring the abequose biosynthetic genes from Y. pseudotuberculosis serogroup HA, the detailed genetic principles underlying a 3,6-dideoxyhexose polymorphism in Y. pseudotuberculosis have not been addressed. To extend the available information on the genes responsible for 3,6-dideoxyhexose formation in Yersinia spp. and facilitate a comparison with the established rfb (O antigen) cluster of Salmonella spp., we report the production of three overlapping clones containing the entire gene cluster required for CDP-ascarylose biosynthesis. On the basis of a detailed sequence analysis, the implications regarding 3,6-dideoxyhexose polymorphism among Salmonella and Yersinia spp. are discussed. In addition, the functional cloning of this region has allowed the expression of Ep (alpha-D-glucose cytidylyltransferase), Eod (CDP-D-glucose 4,6-dehydratase), E1 (CDP-6-deoxy-L-threo-D-glycero-4- hexulose-3-dehydrase), E3 (CDP-6-deoxy-delta 3,4-glucoseen reductase), Eep (CDP-3,6-dideoxy-D-glycero-D- glycero-4-hexulose-5-epimerase), and Ered (CDP-3,6-dideoxy-L-glycero-D-glycero-4-hexulose-4-reductase), facilitating future mechanistic studies of this intriguing biosynthetic pathway.  相似文献   

8.
Malic enzymes catalyze the oxidative decarboxylation of L-malate to pyruvate and CO(2) with the reduction of the NAD(P)(+) cofactor in the presence of divalent cations. We report the crystal structures at up to 2.1 A resolution of human mitochondrial NAD(P)(+)-dependent malic enzyme in different pentary complexes with the natural substrate malate or pyruvate, the dinucleotide cofactor NAD(+) or NADH, the divalent cation Mn(2+), and the allosteric activator fumarate. Malate is bound deep in the active site, providing two ligands for the cation, and its C4 carboxylate group is out of plane with the C1-C2-C3 atoms, facilitating decarboxylation. The divalent cation is positioned optimally to catalyze the entire reaction. Lys183 is the general base for the oxidation step, extracting the proton from the C2 hydroxyl of malate. Tyr112-Lys183 functions as the general acid-base pair to catalyze the tautomerization of the enolpyruvate product from decarboxylation to pyruvate.  相似文献   

9.
Gross JW  Hegeman AD  Vestling MM  Frey PA 《Biochemistry》2000,39(45):13633-13640
The single-turnover kinetic mechanism for the reaction catalyzed by dTDP-glucose 4,6-dehydratase (4,6-dehydratase) has been determined by rapid mix-chemical quench mass spectrometry. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to analyze quenched samples. The results were compatible with the postulated reaction mechanism, in which NAD(+) initially oxidizes glucosyl C4 of dTDP-glucose to NADH and dTDP-4-ketoglucose. Next, water is eliminated between C5 and C6 of dTDP-4-ketoglucose to form dTDP-4-ketoglucose-5,6-ene. Hydride transfer from NADH to C6 of dTDP-4-ketoglucose-5,6-ene regenerates NAD(+) and produces the product dTDP-4-keto-6-deoxyglucose. The single-turnover reaction was quenched at various times on the millisecond scale with a mixture of 6 M guanidine hydrochloride and sodium borohydride, which stopped the reaction and reductively stabilized the intermediates and product. Quantitative MALDI-TOF MS analysis of the quenched samples allowed the simultaneous observation of the disappearance of substrate, transient appearance and disappearance of dTDP-hexopyranose-5,6-ene (the reductively stabilized dTDP-4-ketoglucose-5,6-ene), and the appearance of product. Kinetic modeling of the process allowed rate constants for most of the steps of the reaction of dTDP-glucose-d(7) to be evaluated. The transient formation and reaction of dTDP-4-ketoglucose could not be observed, because this intermediate did not accumulate to detectable concentrations.  相似文献   

10.
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.  相似文献   

11.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

12.
L A LeBrun  B V Plapp 《Biochemistry》1999,38(38):12387-12393
The rate of association of NAD(+) with wild-type horse liver alcohol dehydrogenase (ADH) is maximal at pH values between pK values of about 7 and 9, and the rate of NADH association is maximal at a pH below a pK of 9. The catalytic zinc-bound water, His-51 (which interacts with the 2'- and 3'-hydroxyl groups of the nicotinamide ribose of the coenzyme in the proton relay system), and Lys-228 (which interacts with the adenosine 3'-hydroxyl group and the pyrophosphate of the coenzyme) may be responsible for the observed pK values. In this study, the Lys228Arg, His51Gln, and Lys228Arg/His51Gln (to isolate the effect of the catalytic zinc-bound water) mutations were used to test the roles of the residues in coenzyme binding. The steady state kinetic constants at pH 8 for the His51Gln enzyme are similar to those for wild-type ADH. The Lys228Arg and Lys228Arg/His51Gln substitutions decrease the affinity for the coenzymes up to 16-fold, probably due to altered interactions with the arginine at position 228. As determined by transient kinetics, the rate constant for association of NAD(+) with the mutated enzymes no longer decreases at high pH. The pH profile for the Lys228Arg enzyme retains the pK value near 7. The His51Gln and Lys228Arg/His51Gln substitutions significantly decrease the rate constants for NAD(+) association, and the pH dependencies show that these enzymes bind NAD(+) most rapidly at a pH above pK values of 8. 0 and 9.0, respectively. It appears that the pK of 7 in the wild-type enzyme is shifted up by the H51Q substitutions, and the resulting pH dependence is due to the deprotonation of the catalytic zinc-bound water. Kinetic simulations suggest that isomerization of the enzyme-NAD(+) complex is substantially altered by the mutations. In contrast, the pH dependencies for NADH association with His51Gln, Lys228Arg, and Lys228Arg/His51Gln enzymes were the same as for wild-type ADH, suggesting that the binding of NAD(+) and the binding of NADH are controlled differently.  相似文献   

13.
Hegeman AD  Gross JW  Frey PA 《Biochemistry》2002,41(8):2797-2804
The conversion of dTDP-glucose into dTDP-4-keto-6-deoxyglucose by Escherichia coli dTDP-glucose 4,6-dehydratase (4,6-dehydratase) takes place in the active site in three steps: dehydrogenation to dTDP-4-ketoglucose, dehydration to dTDP-4-ketoglucose-5,6-ene, and rereduction of C6 to the methyl group. The 4,6-dehydratase makes use of tightly bound NAD(+) as the coenzyme for transiently oxidizing the substrate, activating it for the dehydration step. Dehydration may occur by either of two mechanisms, enolization of the dTDP-4-ketoglucose intermediate, followed by elimination [as proposed for beta-eliminations by Gerlt, J. A., and Gassman, P. G. (1992) J. Am. Chem. Soc. 114, 5928-5934], or a concerted 5,6-elimination of water from the intermediate. To assign one of these two mechanisms, a simultaneous kinetic characterization of glucosyl C5((1)H/(2)H) solvent hydrogen and C6((16)OH/(18)OH) solvent oxygen exchange was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The reaction of the wild-type enzyme is shown to proceed through a concerted dehydration mechanism. Interestingly, mutation of Asp135, the acid catalyst, to Asn or Ala alters the mechanism, allowing enolization to occur to varying extents. While aspartic acid 135 is the acid catalyst for dehydration in the wild-type enzyme, the differential enolization capabilities of D135N and D135A dehydratases suggest an additional role for this residue. We postulate that the switch from a concerted to stepwise dehydration mechanism observed in the aspartic acid variants is due to the loss of control over the glucosyl C5-C6 bond rotation in the active site.  相似文献   

14.
Mammalian 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) is a member of the short chain dehydrogenase/reductase. It is a key steroidogenic enzyme that catalyzes the first step of the multienzyme pathway conversion of circulating dehydroepiandrosterone and pregnenolone to active steroid hormones. A three dimensional model of a ternary complex of human 3beta-HSD type 1 (3beta-HSD_1) with an NAD cofactor and androstenedione product has been developed based upon X-ray structures of the ternary complex of E. coli UDP-galactose 4-epimerase (UDPGE) with an NAD cofactor and substrate (PDB_AC: 1NAH) and the ternary complex of human type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD_1) with an NADP cofactor and androstenedione (PDB_AC: 1QYX). The dimeric structure of the enzyme was built from two monomer models of 3beta-HSD_1 by respective 3D superposition with A and B subunits of the dimeric structure of Streptococcus suis DTDP-D-glucose 4,6-dehydratase (PDB_AC: 1KEP). The 3D model structure of 3beta-HSD_1 has been successfully used for the rational design of mutagenic experiments to further elucidate the key substrate binding residues in the active site as well as the basis for dual function of the 3beta-HSD_1 enzyme. The structure based mutant enzymes, Asn100Ser, Asn100Ala, Glu126Leu, His232Ala, Ser322Ala and Asn323Leu, have been constructed and functionally characterized. The mutagenic experiments have confirmed the predicted roles of the His232 and Asn323 residues in recognition of the 17-keto group of the substrate and identified Asn100 and Glu126 residues as key residues that participate for the dehydrogenase and isomerization reactions, respectively.  相似文献   

15.
Yun M  Park CG  Kim JY  Park HW 《Biochemistry》2000,39(35):10702-10710
The crystal structures of gyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Escherichia coli have been determined in three different enzymatic states, NAD(+)-free, NAD(+)-bound, and hemiacetal intermediate. The NAD(+)-free structure reported here has been determined from monoclinic and tetragonal crystal forms. The conformational changes in GAPDH induced by cofactor binding are limited to the residues that bind the adenine moiety of NAD(+). Glyceraldehyde 3-phosphate (GAP), the substrate of GAPDH, binds to the enzyme with its C3 phosphate in a hydrophilic pocket, called the "new P(i)" site, which is different from the originally proposed binding site for inorganic phosphate. This observed location of the C3 phosphate is consistent with the flip-flop model proposed for the enzyme mechanism [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. Via incorporation of the new P(i) site in this model, it is now proposed that the C3 phosphate of GAP initially binds at the new P(i) site and then flips to the P(s) site before hydride transfer. A superposition of NAD(+)-bound and hemiacetal intermediate structures reveals an interaction between the hydroxyl oxygen at the hemiacetal C1 of GAP and the nicotinamide ring. This finding suggests that the cofactor NAD(+) may stabilize the transition state oxyanion of the hemiacetal intermediate in support of the flip-flop model for GAP binding.  相似文献   

16.
TDP-D-glucose 4,6-dehydratase was purified from Saccharopolyspora erythraea, the producer of the macrolide antibiotic erythromycin A, by a high resolution chromatographic method that exploited the difference in the behavior of the protein on anionic exchange chromatography in Tris/HCl or phosphate buffers. By this method, the enzyme was purified approximately 900-fold by two anionic exchange steps to more than 90% homogeneity. It was further purified to apparent homogeneity by hydrophobic interaction chromatography. The enzyme is a homodimer of Mr 36,000 subunits, is highly specific for TDP-D-glucose, requires NAD+ as cofactor, and shows a K'm of 34 microM and V'max of 26 mumol h-1 mg-1 of protein for TDP-D-glucose. TDP and TTP strongly inhibit the enzyme at 2 mM. The maximal TDP-D-glucose 4,6-dehydratase activity coincides with the time of erythromycin production, suggesting that this enzyme is involved in antibiotic biosynthesis.  相似文献   

17.
Mulichak AM  Bonin CP  Reiter WD  Garavito RM 《Biochemistry》2002,41(52):15578-15589
GDP-D-mannose 4,6-dehydratase catalyzes the first step in the de novo synthesis of GDP-L-fucose, the activated form of L-fucose, which is a component of glycoconjugates in plants known to be important to the development and strength of stem tissues. We have determined the three-dimensional structure of the MUR1 dehydratase isoform from Arabidopsis thaliana complexed with its NADPH cofactor as well as with the ligands GDP and GDP-D-rhamnose. MUR1 is a member of the nucleoside-diphosphosugar modifying subclass of the short-chain dehydrogenase/reductase enzyme family, having homologous structures and a conserved catalytic triad of Lys, Tyr, and Ser/Thr residues. MUR1 is the first member of this subfamily to be observed as a tetramer, the interface of which reveals a close and intimate overlap of neighboring NADP(+)-binding sites. The GDP moiety of the substrate also binds in an unusual syn conformation. The protein-ligand interactions around the hexose moiety of the substrate support the importance of the conserved triad residues and an additional Glu side chain serving as a general base for catalysis. Phe and Arg side chains close to the hexose ring may serve to confer substrate specificity at the O2 position. In the MUR1/GDP-D-rhamnose complex, a single unique monomer within the protein tetramer that has an unoccupied substrate site highlights the conformational changes that accompany substrate binding and may suggest the existence of negative cooperativity in MUR1 function.  相似文献   

18.
5,10-Methylenetetrahydrofolate dehydrogenase (MTD) catalyzes the reversible oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate. This reaction is critical for the supply of one-carbon units at the required oxidation states for the synthesis of purines and dTMP. For most MTDs, dehydrogenase activity is co-located with a methenyl-THF cyclohydrolase activity as part of bifunctional or trifunctional enzyme. The yeast Saccharomyces cerevisiae contains a monofunctional NAD(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase (yMTD). Kinetic, crystallographic, and mutagenesis studies were conducted to identify critical residues in order to gain further insight into the reaction mechanism of this enzyme and its apparent lack of cyclohydrolase activity. Hydride transfer was found to be rate-limiting for the oxidation of methylenetetrahydrofolate by kinetic isotope experiments (V(H)/V(D) = 3.3), and the facial selectivity of the hydride transfer to NAD(+) was determined to be Pro-R (A-specific). Model building based on the previously solved structure of yMTD with bound NAD cofactor suggested a possible role for three conserved amino acids in substrate binding or catalysis: Glu121, Cys150, and Thr151. Steady-state kinetic measurements of mutant enzymes demonstrated that Glu121 and Cys150 were essential for dehydrogenase activity, whereas Thr151 allowed some substitution. Our results are consistent with a key role for Glu121 in correctly binding the folate substrate; however, the exact role of C150 is unclear. Single mutants Thr57Lys and Tyr98Gln and double mutant T57K/Y98Q were prepared to test the hypothesis that the lack of cyclohydrolase activity in yMTD was due to the substitution of a conserved Lys/Gln pair found in bifunctional MTDs. Each mutant retained dehydrogenase activity, but no cyclohydrolase activity was detected.  相似文献   

19.
20.
Serine dehydrogenase from Escherichia coli is a homotetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) family. This enzyme catalyses the NADP(+)-dependent oxidation of serine to 2-aminomalonate semialdehyde. The enzyme shows a stereospecificity for β-(3S)-hydroxy acid as a substrate; however, no stereospecificity was observed at the α-carbon. The structures of the ligand-free SerDH and SerDH-NADP(+)-phosphate complex were determined at 1.9 and 2.7 ? resolutions, respectively. The overall structure, including the catalytic tetrad of Asn106, Ser134, Tyr147 and Lys151, shows obvious relationships with other members of the SDR family. The structure of the substrate-binding loop and that of the C-terminal region were disordered in the ligand-free enzyme, whereas these structures were clearly defined in the SerDH-NADP(+) complex as a closed form. Interestingly, the C-terminal region was protruded from the main body and it formed an anti-parallel β-sheet with another C-terminal region on the subunit that is diagonally opposite to that in the tetramer. It is revealed that the C-terminal region possesses the important roles in substrate binding through the stabilization of the substrate-binding loop in the closed form complex. The roles of the C-terminal region along with those of the residues involved in substrate recognition were studied by site-directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号