首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complete conversion of skeletal muscle glycogen synthetase from the I form to the D form requires incorporation of 2 mol of phosphate per enzyme subunit (90,000 g). Incubation of sythetase I with low concentrations of adenosine 3':5'-monophosphate(cAMP)-dependent protein kinase (10 units/ml) and ATP (0.1 to 0.3 mM) plus magnesium acetate (10 mM) results in incorporation within 1/2 hour of 1 mol of phosphate persubunit concomitant with a decrease in the synthetase activity ratio (minus glucose-6-P/plus glucose-6-P) from 0.85 to 0.25. Further incubation for 6 hours does not greatly increase the phosphate content of the synthetase or promote conversion to the D form. This level of phosphorylation is not increased by raising the concentration of protein kinase to 150 units/ml and is not influenced by the presence of glucose-6-P, UDP-glucose, or glycogen. However, at protein kinase concentrations of 10,000 to 30,000 units/ml a second mol of phosphate is incorporated per subunit, and the sythetase activity ratio decreases to 0.05 or less. In addition to the 2 mol of phosphate persubunit which are required for formation of sythetase D, further phosphorylation can be observed which is not associated with changes in synthetase activity. This phosphorylation occurs at a slow rate, is increased by raising the ATP concentration to 2 to 4mM, and is not blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. These data indicate that skeletal muscle glycogen synthetase contains multiple phosphorylation sites only two of which are involved in the synthetase I to D conversion.  相似文献   

2.
In extracts from the adductor muscle of the shell-fish, Pecten maximus, glycogen synthetase (EC.2.4.1.11) was found. The enzyme occurs predominantly as D form (glucose-6-P dependent for activity). An I form (G-6-P independent) was also present. Kinetics of glycogen synthetase showed that the Ka for G-6-P in the D form was 10 fold higher than in the I form. Both forms of glycogen synthetase were interconverted through reactions catalyzed by phosphatase and kinase enzymes respectively. Glucose-6-P and Mg+2 must be present to stabilize glycogen synthetase and to activate the synthetase D phosphatase, found in the 90,000 X g protein-glycogen complex. The conversion of synthetase D to I was inhibited by F-, glycogen, ATP and UTP. When F- was present the effect of G-6-P on synthetase and phosphatase suggested that conversion involved the existence of more than a single glycogen synthetase phosphatase enzyme. ATP and Mg+2 were necessary for the conversion of synthetase I to D, and the conversion was stimulated by cAMP.  相似文献   

3.
《Insect Biochemistry》1985,15(6):703-709
Two synthetic peptides identical to those present in the corpus cardiacum of the American cockroach, Periplaneta americana, were tested for their effect on the production of cyclic AMP and the activation of glycogen phosphorylase in cockroach fat body. The peptides activate glycogen phosphorylase and promote trehalose production in incubated tissue when calcium is included in the incubation medium, but have no obvious effect on cyclic AMP levels. The lack of effect of the peptides on cyclic AMP production was confirmed in a fragmented membrane preparation. By contrast, an aqueous extract of corpus cardiacum activates glycogen phosphorylase, promotes trehalose production and elevates cyclic AMP levels in incubated tissue; the extract also enhances cyclic AMP production in the fragmented cell membrane preparation. Observations on the nature of cyclic AMP production in cockroach fat body indicate that the adenylate cyclase has a requirement for GTP and magnesium ions, is stimulated by fluoride and forskolin and, therefore, is similar to the adenylate cyclase complex of other eukaryotes.The results suggest that increases in intracellular calcium concentrations may mediate the expression of hypertrehalosemic effects by the synthetic peptides.  相似文献   

4.
Histochemical studies on field-collected specimens of larval blackflies showed no significant differences in endocrine activity between mermithid-infected and uninfected Prosimulium mixtum fuscum larvae of similar body dimensions. In Simulium venustum, mermithid parasitism significantly increased the nuclear DNA/RNA activity of the corpus allatum gland as well as the volume and amount of stored neurosecretory material in the corpus cardiacum gland. A marked decline in glycogen concentration and the amount of fat body tissue was evident in both infected simuliid species. Fat body nucleic acid activity was unaffected by mermithid parasitism. The significance of these effects of mermithid parasitism is discussed with regard to the host-parasite relationship.  相似文献   

5.
Effect of fructose on glycogen synthesis in the perfused rat liver   总被引:1,自引:0,他引:1  
The effect of fructose on glycogen synthesis was examined in the perfused liver of starved rats. With increasing fructose concentration in the perfusate, glycogen synthesis and the % a form of glycogen synthase increased to a maximum at 2 mM and then decreased, progressively. The glucose 6-P level increased with the increase in fructose concentration. On the other hand, the ATP content was unchanged at a concentration of 2 mM or less and decreased at 3 mM or more. We also showed that the stimulation of glycogen synthesis by fructose at a concentration of 2 mM or less was due to activation of glycogen synthase by accumulated glucose 6-P and that ATP depletion at a concentration of 3 mM or more caused an increase in phosphorylase a and a decrease in glycogen synthase activity even in the presence of a high concentration of glucose 6-P.  相似文献   

6.
The activity of leukocyte glycogen synthetase in a freshly prepared homogenate is almost completely in the b form. Incubation of the homogenate at 30°C caused a time dependent increase in the activity measured in the absence of G-6-P (b to a conversion). The Ka for G-6-P decreased from 0.7 to 0.01 mM. Freezing of the homogenate resulted in a complete loss of the capacity for activation. These results demonstrate that glycogen synthetase from leukocytes of normal human subjects can be converted in vitro to a form, which is almost independent of G-6-P for activity.  相似文献   

7.
The effects of E. coli endotoxin administration on hepatic glycogen content and glycogen synthase activities in dogs were studied. Liver glycogen content was decreased by 80% 2 hr after endotoxin injection. When enzyme preparations were preincubated at 25 degrees C for 3 hr prior to their assays, 75% of total glycogen synthase was in I form in control dogs. Under such conditions, endotoxin administration decreased the percentage I activity from 75 to 37%; decreased the Vmax and Km for UDP-glucose for total glycogen synthase by 62.2 and 35.3%, respectively; decreased the Vmax and Km for UDP-glucose for glycogen synthase I by 75.6 and 15.6%, respectively; increased the A0.5 for glucose-6-P for the activation of glycogen synthase D by 126% at high (10 mM) and by 18-fold at low (1 mM) UDP-glucose concentration; increased the percentage D activity from 24 to 72%; decreased the I50 for ATP for the inhibition of total glycogen synthase by 49.7%; decreased the I50 for ATP for the inhibition of glycogen synthase I by 26.4%; and decreased the percentage I activity from 78 to 33% at ATP concentrations below 6 mM. When enzyme preparations were not preincubated prior to their assays, 90% of total glycogen synthase was in D form in control dogs. Under such conditions, endotoxin administration decreased the Vmax and Km for UDP-glucose for total glycogen synthase by 47.1 and 33.3%, respectively, and increased the A0.5 for glucose-6-P for the activation of glycogen synthase D by 24.2% at high (10 mM) and by 106% at low (1 mM) UDP-glucose concentration. From these results, it is clear that endotoxin administration greatly impaired hepatic glycogenesis by decreasing the activity of glycogen synthase; this impairment is at least in part responsible for the depletion of liver glycogen content in endotoxin shock. Kinetic analyses revealed that the decrease in the activity of glycogen synthase in endotoxic shock is a result of a decrease in the interconversion of this enzyme from inactive to active form and an increase in the interconversion from active to inactive form.  相似文献   

8.
Summary Sectioning of the afferent nerves (NCCl and NCCll) to the locust corpus cardiacum prevents thein vivo release of adipokinetic hormone from the glandular lobes. This failure to release the hormone during flight and the consequent lack of lipid mobilisation brings about an impairment of flight performance which can be corrected by injections of corpus cardiacum extracts. Sectioning of the NCCl and NCCll reduces markedly the activity of the corpora allata. However, the poor flight performance of allatectomised locusts is not related to an inability to mobilise lipid since injections of corpus cardiacum extract which will mobilise fat body lipid in these locusts have no effect on flight performance. The results of individual sectioning of the NCCl and NCCll suggest that a double innervation of the glandular lobes functionsin vivo to control adipokinetic hormone release but that the NCCl alone may control the release of the diuretic hormone.  相似文献   

9.
To examine the mechanism by which muscle glycogen limits its own synthesis, muscle glycogen and glucose 6-phosphate (G-6-P) concentrations were measured in seven healthy volunteers during a euglycemic ( approximately 5.5 mM)-hyperinsulinemic ( approximately 450 pM) clamp using (13)C/(31)P nuclear magnetic resonance spectroscopy before and after a muscle glycogen loading protocol. Rates of glycogen synthase (V(syn)) and phosphorylase (V(phos)) flux were estimated during a [1-(13)C]glucose (pulse)-unlabeled glucose (chase) infusion. The muscle glycogen loading protocol resulted in a 65% increase in muscle glycogen content that was associated with a twofold increase in fasting plasma lactate concentrations (P < 0.05 vs. basal) and an approximately 30% decrease in plasma free fatty acid concentrations (P < 0.001 vs. basal). Muscle glycogen loading resulted in an approximately 30% decrease in the insulin-stimulated rate of net muscle glycogen synthesis (P < 0.05 vs. basal), which was associated with a twofold increase in intramuscular G-6-P concentration (P < 0.05 vs. basal). Muscle glycogen loading also resulted in an approximately 30% increase in whole body glucose oxidation rates (P < 0.05 vs. basal), whereas there was no effect on insulin-stimulated rates of whole body glucose uptake ( approximately 10.5 mg. kg body wt(-1). min(-1) for both clamps) or glycogen turnover (V(syn)/V(phos) was approximately 23% for both clamps). In conclusion, these data are consistent with the hypothesis that glycogen limits its own synthesis through feedback inhibition of glycogen synthase activity, as reflected by an accumulation of intramuscular G-6-P, which is then shunted into aerobic and anaerobic glycolysis.  相似文献   

10.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

11.
Two substrains of the epithelial liver cell line C1I, one storing large amounts of glycogen, the other one being very poor in glycogen were used as a model for studying glycogen synthesis. The glycogen content of glycogen-rich cells doubled during the proliferative phase and remained high in plateau phase although glycogen synthase I activity was not significantly altered during growth cycle and was too low to account for the increase in glycogen. However, the activity of the glucose 6-phosphate (Glc6-P)-dependent synthase rose continuously during growth cycle, and intracellular Glc6-P-concentration increased about 10-fold in log phase cells to 0.72 mumol g-1 wet weight. A0.5 of synthase for Glc6-P was 0.79 mM. It was also found that in contrast to the enzyme from normal liver, glycogen phosphorylase a from C1I cells was inhibited by Glc6-P, the apparent Ki being 0.45 mM. It was concluded that glycogen accumulation in C1I cells was due to stimulation of synthase and inhibition of phosphorylase by Glc6-P. Findings from the glycogen-poor cell line which revealed similar specific activities of synthase and phosphorylase but only low Glc6-P (0.056 mumol g-1 wet weight) supported this conclusion. Addition of glucose to starved cells resulted in a transient activation of synthase in both cell lines. Net glycogen synthesis, was, however, only observed in the cells with a high Glc6-P-content. Thus, modulation of synthase and phosphorylase by Glc6-P and not activation/inactivation of the enzymes seems to play a predominant role in glycogen accumulation in this cell line.  相似文献   

12.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

13.
It is well documented that adipose tissue glycogen content decreases during fasting and increases above control during refeeding. We now present evidence that these fluctuations result from adaptations intrinsic to adipose tissue glycogen metabolism that persist in vitro: in response to insulin (1 milliunit/ml), [3H]glucose incorporation into rat fat pad glycogen was reduced to 10% of control after a 3-day fast; incorporation increased 6-fold over fed control on the 4th day of refeeding following a 3-day fast. We have characterized this adaptation with regard to alterations in glycogen synthase and phosphorylase activity. In addition, we found that incubation of fat pads from fasted rats with insulin (1 milliunit/ml) increased glucose-6-P content, indicating that glucose transport was not the rate-limiting step for glucose incorporation into glycogen in the presence of insulin. In contrast, feeding a fat-free diet resulted in dramatic increases in glycogen content of fat pads without a concomitant increase in glucose incorporation into glycogen in response to insulin (1 milliunit/ml). Thus, fasting and refeeding appeared to alter insulin action on adipose tissue glycogen metabolism more than this dietary manipulation.  相似文献   

14.
The human placental glucose-6-P-dependent form of glycogen synthase, in the absence of glucose-6-P, can be activated by MnSO4. Separately, Mn2+ and SO4(2-) have no significant effect. In the presence of glucose-6-P, Mn2+ activates the enzyme, but SO4(2-) inhibits; MnSO4 synergetically increases the enzyme activity. Mn2+ reduces the Ka for glucose-6-P to one-tenth of the control value; SO4(2-) increases the Ka 5-fold; however, MnSO4 has no effect on Ka. MnSO4, like glucose-6-P, increases the Vmax of the enzyme in the presence of its substrate, UDP-glucose; it slightly increases the Km for UDP-glucose. In the presence of glucose-6-P, Mn2+ increases and SO4(2-) decreases the Vmax of the enzyme, but neither has an effect on the Km for UDP-glucose. At physiological concentrations of UDP-glucose and glucose-6-P, either Mn2+ or MnSO4 at concentrations less than 1 mM increases the enzyme activity as much as 8 mM glucose-6-P does. At physiological concentrations of UDP-glucose and glucose-6-P, Mn2+ or MnSO4 reverses the inhibition of the enzyme by ATP.  相似文献   

15.
《Insect Biochemistry》1986,16(2):365-371
Two peptides, HGHI and HGHII, have been isolated from the CC (corpus cardiacum) of the American cockroach, Periplaneta americana, both showing hyperglycaemic and phosphorylase activating potency when tested in adult cockroaches. The isolation procedure involved extraction of CC with 80% methanol and two steps of HPLC (high-performance liquid chromatography). In the first step extracted material was eluted in 0.1% TFA (trifluoroacetic acid) from a molecular size exclusion column. Estimates of molecular mass indicate that both peptides have a molecular mass of about 1000 daltons. In the second step reversed-phase HPLC utilizing a solvent system consisting of 0.1% TFA and acetonitrile was used; a gradient starting at 25% acetonitrile, with a slope 0.3% acetonitrile min−1 was run over 25 min. The first major peak, HGHI, eluted after 13.7 min and caused a strong hyperglycaemic response as well as strong activation of fat body glycogen phosphorylase when the equivalent of 0.1 of a pair was tested. For HGHII eluting after 21.3 min the hyperglycaemic effect as well as phosphorylase activation were only 50% of the response obtained for HGHI when the equivalent of 0.1 of a pair was injected.  相似文献   

16.
Previous studies have indicated that the glycogen content of adrenal glands of fasted rats can be depleted by insulin per se (Bindstein, E., Piras, R., and Piras, M. M., Endocrinology88, 223, 1971). In order to establish the mechanism of action of this hormone in the adrenal gland, the effect of insulin has been now investigated on glycogen synthetase (UDP-glucose: α-1,4 glucan α-4-glueosyl-transferase, EC 2.4.1.11), glycogen phosphorylase (α-1,4 glucan: orthophosphate glucosyl-transferase, EC 2.4.1.1) and metabolites related to these enzymes.Approximately 40% of total adrenal glycogen phosphorylase of fasted rats is in the active form, which increases to 75% 1 hr after insulin treatment (75 mU/100 g body wt). This conversion occurs without apparent large changes of 3′-5′ cyclic AMP. Concomitantly with the enzymatic change, the levels of glucose-6-P, UDP-glucose and Pi suffer alterations which favor an increased phosphorolytic activity during the first hour of insulin treatment. Glycogen synthetase, which did not change during this period, is converted to the glucose-6-P independent form during the 2–3 hr of treatment. This conversion is preceded by an increased glycogen synthetase phosphatase activity, which seems to follow an inverse relationship with the glycogen level.The results obtained suggest that the effect of insulin on the adrenal gland of fasted rats is glycogenolytic, that is, opposite to that described for this hormone in other normal tissues. The glycogen depletion, on the other hand, seems to set in motion the mechanism for glycogen synthetase activation, with the subsequent glycogen resynthesis.  相似文献   

17.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

18.
Studies of rat skeletal glycogen metabolism carried out in a perfused hindlimb system indicated that epinephrine activates phosphorylase via the cascade of phosphorylation reactions classically linked to the beta-adrenergic receptor/adenylate cyclase system. The beta blocker propranolol completely blocked the effects of epinephrine on cAMP, cAMP-dependent protein kinase, phosphorylase, and glucose-6-P, whereas the alpha blocker phentolamine was totally ineffective. Omission of glucose from the perfusion medium did not modify the effects of epinephrine. Glycogen synthase activity in control perfused and nonperfused muscle was largely glucose-6-P-dependent (-glucose-6-P/+glucose-6-P activity ratios of 0.1 and 0.2, respectively). Epinephrine perfusion caused a small decrease in the enzyme's activity ratio (0.1 to 0.05) and a large increase in its Ka for glucose-6-P (0.3 to 1.5 mM). This increase in glucose-6-P dependency correlated in time with protein kinase activation and was totally blocked by propranolol and unaffected by phentolamine. Comparison of the kinetics of glycogen synthase in extracts of control and epinephrine-perfused muscle with the kinetics of purified rat skeletal muscle glycogen synthase a phosphorylated to various degrees by cAMP-dependent protein kinase indicated that the enzyme was already substantially phosphorylated in control muscle and that epinephrine treatment caused further phosphorylation of synthase, presumably via cAMP-dependent protein kinase. These data provide a basis for speculation about in vivo regulation of the enzyme.  相似文献   

19.
During encystation of Hartmannella culbertsoni induced by taurine or epinephrine, 60-70% of the reserve glycogen is degraded. Glycogen phosphorylase is activated and glycogen synthetase is inhibited after 6-8 hr of exposure to the encystation medium. The carbon skeleton of glycogen but not that of protein is utilised in the synthesis of cyst wall cellulose. Exogenously added glucose (225 and 550 mM) blocks encystation, degradation of glycogen and synthesis of cellulose. Cyclic AMP synthesis is also very much reduced in cells exposed to glucose.  相似文献   

20.
The effect of the concentration of glucose in the medium on the intracellular concentrations of metabolites of C-6 astrocytoma cells and C-1300 neuroblastoma cells in culture has been investigated. The intracellular concentrations of glucose, glycogen, glucose 6-P and UDP-glucose were measured at intervals after feeding the cells. A rapid increase in glucose and glucose 6-P levels occurred when fresh medium containing 5.5 mM glucose was applied to the cells, followed by slower increases in UDP-glucose andglycogen. When the medium glucose was increased ten-fold, the intracellular concentration of glucose was increased, but the level of glucose 6-P, UDP=-glucose and glycogen were not altered, nor were the rates of accumulation. The addition of insulin to the medium resulted in an increase of intracellular glucose, glucose 6-P and glycogen. The transport of glucose into the cells is not the rate-limiting step of the regulation of metabolite levels in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号