首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lymphatic system returns interstitial fluid to the central venous circulation, in part, by the cyclical contraction of a series of "lymphangion pumps" in a lymphatic vessel. The dynamics of individual lymphangions have been well characterized in vitro; their frequencies and strengths of contraction are sensitive to both preload and afterload. However, lymphangion interaction within a lymphatic vessel has been poorly characterized because it is difficult to experimentally alter properties of individual lymphangions and because the afterload of one lymphangion is coupled to the preload of another. To determine the effects of lymphangion interaction on lymph flow, we adapted an existing mathematical model of a lymphangion (characterizing lymphangion contractility, lymph viscosity, and inertia) to create a new lymphatic vessel model consisting of several lymphangions in series. The lymphatic vessel model was validated with focused experiments on bovine mesenteric lymphatic vessels in vitro. The model was then used to predict changes in lymph flow with different time delays between onset of contraction of adjacent lymphangions (coordinated case) and with different relative lymphangion contraction frequencies (noncoordinated case). Coordination of contraction had little impact on mean flow. Furthermore, orthograde and retrograde propagations of contractile waves had similar effects on flow. Model results explain why neither retrograde propagation of contractile waves nor the lack of electrical continuity between lymphangions adversely impacts flow. Because lymphangion coordination minimally affects mean flow in lymphatic vessels, lymphangions have flexibility to independently adapt to local conditions.  相似文献   

2.
The aim of this investigation was to achieve the first step toward a comprehensive model of the lymphatic system. A numerical model has been constructed of a lymphatic vessel, consisting of a short series chain of contractile segments (lymphangions) and of intersegmental valves. The changing diameter of a segment governs the difference between the flows through inlet and outlet valves and is itself governed by a balance between transmural pressure and passive and active wall properties. The compliance of segments is maximal at intermediate diameters and decreases when the segments are subject to greatly positive or negative transmural pressure. Fluid flow is the result of time-varying active contraction causing diameter to reduce and is limited by segmental viscous and valvular resistance. The valves effect a smooth transition from low forward-flow resistance to high backflow resistance. Contraction occurs sequentially in successive lymphangions in the forward-flow direction. The behavior of chains of one to five lymphangions was investigated by means of pump function curves, with variation of valve opening parameters, maximum contractility, lymphangion size gradation, number of lymphangions, and phase delay between adjacent lymphangion contractions. The model was reasonably robust numerically, with mean flow-rate generally reducing as adverse pressure was increased. Sequential contraction was found to be much more efficient than synchronized contraction. At the highest adverse pressures, pumping failed by one of two mechanisms, depending on parameter settings: either mean leakback flow exceeded forward pumping or contraction failed to open the lymphangion outlet valve. Maximum pressure and maximum flow-rate were both sensitive to the contractile state; maximum pressure was also determined by the number of lymphangions in series. Maximum flow-rate was highly sensitive to the transmural pressure experienced by the most upstream lymphangions, suggesting that many feeding lymphatics would be needed to supply one downstream lymphangion chain pumping at optimal transmural pressure.  相似文献   

3.
To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.  相似文献   

4.

The lymphatics maintain fluid balance by returning interstitial fluid to veins via contraction/compression of vessel segments with check valves. Disruption of lymphatic pumping can result in a condition called lymphedema with interstitial fluid accumulation. Lymphedema treatments are often ineffective, which is partially attributable to insufficient understanding of specialized lymphatic muscle lining the vessels. This muscle exhibits cardiac-like phasic contractions and smooth muscle-like tonic contractions to generate and regulate flow. To understand the relationship between this sub-cellular contractile machinery and organ-level pumping, we have developed a multiscale computational model of phasic and tonic contractions in lymphatic muscle and coupled it to a lymphangion pumping model. Our model uses the sliding filament model (Huxley in Prog Biophys Biophys Chem 7:255–318, 1957) and its adaptation for smooth muscle (Mijailovich in Biophys J 79(5):2667–2681, 2000). Multiple structural arrangements of contractile components and viscoelastic elements were trialed but only one provided physiologic results. We then coupled this model with our previous lumped parameter model of the lymphangion to relate results to experiments. We show that the model produces similar pressure, diameter, and flow tracings to experiments on rat mesenteric lymphatics. This model provides the first estimates of lymphatic muscle contraction energetics and the ability to assess the potential effects of sub-cellular level phenomena such as calcium oscillations on lymphangion outflow. The maximum efficiency value predicted (40%) is at the upper end of estimates for other muscle types. Spontaneous calcium oscillations during diastole were found to increase outflow up to approximately 50% in the range of frequencies and amplitudes tested.

  相似文献   

5.
The lymphatic system is an open-ended network of vessels that run in parallel to the blood circulation system. These vessels are present in almost all of the tissues of the body to remove excess fluid. Similar to blood vessels, lymphatic vessels are found in branched arrangements. Due to the complexity of experiments on lymphatic networks and the difficulty to control the important functional parameters in these setups, computational modeling becomes an effective and essential means of understanding lymphatic network pumping dynamics. Here we aimed to determine the effect of pumping coordination in branched network structures on the regulation of lymph flow. Lymphatic vessel networks were created by building upon our previous lumped-parameter model of lymphangions in series. In our network model, each vessel is itself divided into multiple lymphangions by lymphatic valves that help maintain forward flow. Vessel junctions are modeled by equating the pressures and balancing mass flows. Our results demonstrated that a 1.5 s rest-period between contractions optimizes the flow rate. A time delay between contractions of lymphangions at the junction of branches provided an advantage over synchronous pumping, but additional time delays within individual vessels only increased the flow rate for adverse pressure differences greater than 10.5 cmH2O. Additionally, we quantified the pumping capability of the system under increasing levels of steady transmural pressure and outflow pressure for different network sizes. We observed that peak flow rates normally occurred under transmural pressures between 2 to 4 cmH2O (for multiple pressure differences and network sizes). Networks with 10 lymphangions per vessel had the highest pumping capability under a wide range of adverse pressure differences. For favorable pressure differences, pumping was more efficient with fewer lymphangions. These findings are valuable for translating experimental measurements from the single lymphangion level to tissue and organ scales.  相似文献   

6.
The paper describes the extension of a previously developed model of pressure-dependent contraction rate to the case of multiple lymphangions. Mechanical factors are key modulators of active lymphatic pumping. As part of the evolution of our lumped-parameter model to match experimental findings, we have designed an algorithm whereby the time until the next contraction depends on lymphangion transmural pressure in the contraction just completed. The functional dependence of frequency on pressure is quantitatively matched to isobaric contraction experiments on isolated lymphatic segments. When each of several lymphangions is given this ability, a scheme for their coordination must be instituted to match the observed synchronization. Accordingly, and in line with an experiment on an isolated lymphatic vessel segment in which we measured contraction sequence and conduction delay, we took the fundamental principle to be that local timing can be overridden by signals to initiate contraction that start in adjacent lymphangions, conducted with a short delay. The scheme leads to retrograde conduction when the lymphangion chain is pumping against an adverse pressure difference, but antegrade conduction when contractions occur with no or a favourable pressure difference. Abolition of these conducted signals leads to chaotic variation of cycle-mean flow-rate from the chain, diastolic duration in each lymphangion, and inter-lymphangion delays. Chaotic rhythm is also seen under other circumstances. Because the model responds to increasing adverse pressure difference by increasing the repetition rate of contractions, it maintains time-average output flow-rate better than one with fixed repetition rate.  相似文献   

7.
Lymphangions, segments of lymphatic vessels bounded by valves, have characteristics of both ventricles and arteries. They can act primarily like pumps when actively transporting lymph against a pressure gradient. They also can act as conduit vessels when passively transporting lymph down a pressure gradient. This duality has implications for clinical treatment of several types of edema, since the strategy to optimize lymph flow may depend on whether it is most beneficial for lymphangions to act as pumps or conduits. To address this duality, we employed a simple computational model of a contracting lymphangion, predicted the flows at both positive and negative axial pressure gradients, and validated the results with in vitro experiments on bovine mesenteric vessels. This model illustrates that contraction increases flow for normal axial pressure gradients. With edema, limb elevation, or external compression, however, the pressure gradient might reverse, and lymph may flow passively down a pressure gradient. In such cases, the valves may be forced open during the entire contraction cycle. The vessel thus acts as a conduit, and contraction has the effect of increasing resistance to passive flow, thus inhibiting flow rather than promoting it. This analysis may explain a possible physiological benefit of the observed flow-mediated inhibition of the lymphatic pump at high flow rates.  相似文献   

8.
We propose a one-dimensional model for collecting lymphatics coupled with a novel Electro-Fluid-Mechanical Contraction (EFMC) model for dynamical contractions, based on a modified FitzHugh–Nagumo model for action potentials. The one-dimensional model for a deformable lymphatic vessel is a nonlinear system of hyperbolic Partial Differential Equations (PDEs). The EFMC model combines the electrical activity of lymphangions (action potentials) with fluid-mechanical feedback (circumferential stretch of the lymphatic wall and wall shear stress) and lymphatic vessel wall contractions. The EFMC model is governed by four Ordinary Differential Equations (ODEs) and phenomenologically relies on: (1) environmental calcium influx, (2) stretch-activated calcium influx, and (3) contraction inhibitions induced by wall shear stresses. We carried out a stability analysis of the stationary state of the EFMC model. Contractions turn out to be triggered by the instability of the stationary state. Overall, the EFMC model allows emulating the influence of pressure and wall shear stress on the frequency of contractions observed experimentally. Lymphatic valves are modelled by extending an existing lumped-parameter model for blood vessels. Modern numerical methods are employed for the one-dimensional model (PDEs), for the EFMC model and valve dynamics (ODEs). Adopting the geometrical structure of collecting lymphatics from rat mesentery, we apply the full mathematical model to a carefully selected suite of test problems inspired by experiments. We analysed several indices of a single lymphangion for a wide range of upstream and downstream pressure combinations which included both favourable and adverse pressure gradients. The most influential model parameters were identified by performing two sensitivity analyses for favourable and adverse pressure gradients.  相似文献   

9.
BACKGROUND: The prenatal development of human lymphatic systems has not attracted enough attention by lymphatic researchers in the past. Yet clearly these critical, early events determine the fate and function of the human lymphatic system. METHODS AND RESULTS: The main focus of these studies was to investigate the embryonic development of human lymphangions including lymphatic valves and muscle cells, to better understand the prenatal formation of basic structural elements of lymph flow. This review in most of its parts is a short summary of the findings. It provides important information necessary for understanding the development and functioning of the human lymphatic system. CONCLUSIONS: The structural basis of the active lymph transport system--the lymphatic muscle cells and lymphatic valves--which is absolutely necessary for all functions of lymphatic system, is already formed during the first half of the prenatal development in humans. During the second half of this development maturation of this system is already underway. The enlargement of lymphatic muscle cells together with increases in their quantity leads to formation of the multi-layered lymphatic vessel wall, able to develop contractions strong enough to propel lymph downstream of the lymphatic channels against gravity in bipedal humans. The development of the competent valves in lymphatic vessels occurs at the same time creating the ground for effective net, unidirectional lymph flow. The data summarized here represents some of the first systematic studies of the prenatal development of lymphatic muscle cells and valves in humans.  相似文献   

10.
Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses1. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation2. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency4. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively5. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed.Contraction of smooth muscle is generally regulated by the cytosolic Ca2+ concentration ([Ca2+]i) plus sensitivity to Ca2+, of the contractile elements in response to changes in the environment surrounding the cell6. [Ca2+]i is determined by the combination of the movement of Ca2+ through plasma membrane ligand or voltage gated Ca2+ channels and the release and uptake of Ca2+ from internal stores. Cytosolic Ca2+ binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction8. However, the sensitivity of this pathway to Ca2+ can be regulated by the MLC phosphatase (MLCP)9. MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17.Here, we present a method to evaluate changes in [Ca2+]i over time in isolated, perfused lymphatics in order to study Ca2+-dependent and Ca2+-sensitizing mechanisms of lymphatic smooth muscle contraction. Using isolated rat mesenteric collecting lymphatics we studied stretch-induced changes in [Ca2+]i and contractile activity. The isolated lymphatic model offers the advantage that pressure, flow, and the chemical composition of the bath solution can be tightly controlled. [Ca2+]i was determined by loading lymphatics with the ratiometric, Ca2+-binding dye Fura-2. These studies will provide a new approach to the broader problem of studying the different molecular mechanisms that regulate phasic contractions versus tonic constriction in lymphatic smooth muscle.  相似文献   

11.
It has been proposed that alterations in lymphatic smooth muscle activity significantly impact lymphatic function. Numerous endogenous vasoactive agents are known to constrict prenodal lymph vessels. In this study, we assessed the ability of dopamine to alter lymphatic smooth muscle tone in perfused prenodal lymph vessels. Additionally, the receptor mechanisms of dopamine's actions were elucidated. Both intralymphatic (i.l.) and intra-arterial (i.a.) dopamine significantly increased lymphatic perfusion pressure. The increase in lymphatic pressure was completely blocked by i.a. phentolamine, suggesting involvement of alpha(1)- and/or alpha(2)-adrenoreceptors. Intra-arterial infusion of the specific alpha(1)-receptor antagonist prazosin completely abolished the constriction seen during i.l. phenylephrine but only attenuated that produced by dopamine. Intralymphatic infusion of the DA(1)-receptor agonist SKF 82526-J and the DA(2)-receptor agonist LY 171555 caused significant relaxation of lymph vessels that had been previously constricted by i.a. norepinephrine infusion. These data indicate that the constriction produced by dopamine, in the concentrations employed in this study, is mediated by both alpha(1)- and alpha(2)-adrenoreceptors. These lymph vessels do contain both DA(1)- and DA(2)-receptors but stimulation of these receptors results in lymphatic smooth muscle relaxation.  相似文献   

12.
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.  相似文献   

13.
Lymphatic vessels exhibit rhythmical contractility in vivo and in vitro and this activity appears ti regulate lymph flow. A technique for measuring the cicurlar muscle contractions of isolated bovine mesenteric lymphatic vessel segments has been devised and utilized to study the pharmacological properties of these vessels. Non-contracting lympahtic vessels can be induced to contract rhythmically with a variety of mediators, the most potent being a stable PGH2 analogue (compound U46619), and the leukotrienes B4, C4 and D4 (threshold concentrations in the nanomolar range). Prostagladin F, noradrenaline, serotonin and histamine also elicited rhythmical activity but much higher concentrations were required. PGE2 and PGE1 were potent inhibitors of spontaneous contractions or those induced with U46619. In keeping with the diverse pharmacological effects of the metabolites of arachidonic acid, the addition of arachidonate to an isolated lymphatic vessel generated both stimulatory and inhibitory activities.It is concluded that arachidonic acid products (produced in the lymphatic vessel or entering the vessel in lymph draining the tissues) regulate lymph flow through their effects on lymphatic smooth muscle.  相似文献   

14.
A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue–fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.  相似文献   

15.
Abstract: Immunohistochemical localization and distribution of nitric oxide synthase (eNOS), endothelin (ET-1) and endothelin beta receptor (ETB-R) were investigated in precollector and collector lymph vessels in the broad ligament of the uterus during different phases of the estrous cycle in pigs. The polyclonal antibody for ET-1 and ETB-R and monoclonal antibody for eNOS isoform were used to perform observations on the light microscopic level. Immunoreactivities to ET-1, ETB-R and eNOS were observed in the endothelium of precollector and collector lymphangions but not in smooth muscle cells of the lymphatics examined. The staining for eNOS in the endothelial cells of all studied lymphatic vessels was stronger comparing to ET-1 and ETB-R. During the estrous cycle, only eNOS showed the correlation with the particular phases of the estrous cycle. The differences between ET-1 and ETB-R immunoreactivities were very slight and rather independent of the size or type of the lymphatic lymphangions and estrous cycle. The highest immunoreactivity level for eNOS was displayed by collector lymphangions with widened lumen in the follicular phase comparing to the precollector ones. During the luteal phase, a slight decrease in the reaction intensity was observed. The immunoreactivities for ET-1 in the endothelium of the studied vessels was not comparable with the presence or with the reactivity level of ETB-R. Optically stronger immunoreaction for ETB-R was observed in the cytoplasm of collector lymphangions in the follicular phase. eNOS, ET-1 and ETB-R were also present in the cytoplasm of the lymphatic valves. These results suggest that ET-1 and eNOS can play a role in the mechanisms regulating the vascular contractile activity, promoting lymph flow during the estrous cycle in the porcine broad ligament.  相似文献   

16.
The mechanism for interstitial fluid uptake into the lymphatics remains speculative and unresolved. A system of intralymphatic valves exists that prevents reflow along the length of the lymphatic channels. However, these valves are not sufficient to provide unidirectional flow at the level of the initial lymphatics. We investigate here the hypothesis that initial lymphatics have a second, separate valve system that permits fluid to enter from the interstitium into the initial lymph channels but prevents escape back out into the tissue. The transport of fluorescent microspheres (0.31 microm) across endothelium of initial lymphatics in rat cremaster muscle was investigated with micropipette manipulation techniques. The results indicate that microspheres can readily pass from the interstitium across the endothelium into the lumen of the initial lymphatics. Once inside the lymphatic lumen, the microspheres cannot be forced out of the lumen even after elevation of the lymphatic pressure by outflow obstruction. Reaspiration of the microspheres inside the lymphatic lumen with a micropipette is blocked by the lymphatic endothelium. This blockade exists whether the aspiration is carried out at the microsphere entry site or anywhere along the initial lymphatics. Nevertheless, puncture of the initial lymphatic endothelium with the micropipette leads to rapid aspiration of intralymphatic microspheres. Investigation of lymphatic endothelial sections fixed during lymph pumping shows open interendothelial junctions not found in resting initial lymphatics. These results suggest that initial lymphatics have a (primary) valve system at the level of the endothelium. In conjunction with the classical (secondary) intralymphatic valves, the primary valves provide the mechanism that facilitates the unidirectional flow during periodic compression and expansion of initial lymphatics.  相似文献   

17.
Embedded into the wall of collecting lymphatic vessels and trunks, the lymphatic smooth muscles are cardinal to the functions of the lymphatic system. Their intrinsic contractile property--the intrinsic lymph pump--through rhythmical and phasic contractions of the vessels, represents the principal mechanism by which lymph flow is generated. Through changes in tonic constrictions, lymphatic smooth muscles also modulate lymph flow resistance. Lymphatic smooth muscles are sensitive to physical and chemical stimuli, mediating changes in their activity and modulating lymphatic drainage. Because lymphatic smooth muscles play such an important role in fluid transport, their dysfunction may be a component of many inflammatory disease states. This review presents recent findings on the physiology and cellular biology of lymphatic smooth muscles and discusses the importance of these cells for the function of the lymphatic system in physiological and pathophysiological situations.  相似文献   

18.
An existing lumped-parameter model of multiple lymphangions (lymphatic vascular segments) in series is adapted for the incorporation of recent physiological measurements of lymphatic vascular properties. The new data show very marked nonlinearity of the passive pressure–diameter relation during distension, relative to comparable blood vessels, and complex valve behaviour. Since lymph is transported as a result of either the active contraction or the passive squeezing of vascular segments situated between two one-way valves, the performance of these valves is of primary importance. The valves display hysteresis (the opening and closing pressure drop thresholds differ), a bias to staying open (both state changes occur when the trans-valve pressure drop is adverse) and pressure-drop threshold dependence on transmural pressure. These properties, in combination with the strong nonlinearity that valve operation represents, have in turn caused intriguing numerical problems in the model, and we describe numerical stratagems by which we have overcome the problems. The principal problem is also generalised into a relatively simple mathematical example, for which solution detail is provided using two different solvers.  相似文献   

19.
BACKGROUND: The functional characteristics of the bovine mesenteric postnodal lymphatics are well-described. However there are no reports of pumping characteristics of the bovine mesenteric prenodal lymphatics. We propose that the prenodal lymphatics have adapted to the local conditions of lymph flow and are functioning differently than the postnodal vessels. METHODS AND RESULTS: To evaluate pumping in bovine prenodal mesenteric lymphatics, we observed their contractility in response to the changes in transmural pressure and imposed flow. Lymphatics (diameter approximately 460 microm) were isolated, cannulated, and pressurized. Lymphatic diameters were traced from video records; the lymphatic tone index, contraction amplitude and frequency, lymphatic pump indices were calculated. Increasing transmural pressure from 3 to 6 cm H2O produced a strong inotropic response, but did not induce a significant chronotropic response. Pumping reached its maximum at transmural pressures 6-9 cm H2O and was not significantly depressed up to 15 cm H2O, whereas pumping in postnodal lymphatics is typically depressed at transmural pressures higher than 10 cm H2O. Bovine prenodal mesenteric lymphatics also demonstrated very low sensitivity to the increases in imposed flow. CONCLUSIONS: We concluded that the functional heterogeneity exists on the intraregional levels in lymphatic nets.  相似文献   

20.
Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels--smooth muscle and endothelial cells--and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号