首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A serine protease and an enzyme preparation consisting of six chitinases, previously semi-purified from a liquid culture of Paecilomyces lilacinus strain 251, were applied to Meloidogyne javanica eggs to study the effect of the enzymes on eggshell structures. Transmission electron microscopic studies revealed that the protease and chitinases drastically altered the eggshell structures when applied individually or in combination. In the protease-treated eggs, the lipid layer disappeared and the chitin layer was thinner than in the control. The eggs treated with chitinases displayed large vacuoles in the chitin layer, and the vitelline layer was split and had lost its integrity. The major changes in the eggshell structures occurred by the combined effect of P. lilacinus protease and chitinases. The lipid layer was destroyed; the chitin layer hydrolyzed and the vitelline layer had lost integrity. The effect of P. lilacinus protease and chitinase enzymes on the hatching of M. javanica juveniles was also compared with a commercially available bacterial chitinase. The P. lilacinus protease and chitinase enzymes, either individually or in combination, reduced hatching of M. javanica juveniles whereas a commercial bacterial chitinase had an enhancing effect. Some juveniles hatched when the eggs were exposed to a fungal protease and chitinase mixture. We also established that P. lilacinus chitinases retained their activity in the presence of endogenous protease activity.  相似文献   

2.
Dead fungal biomass is an abundant source of nutrition in both litter and soil of temperate forests largely decomposed by bacteria. Here, we have examined the utilization of dead fungal biomass by the five dominant bacteria isolated from the in situ decomposition of fungal mycelia using a multiOMIC approach. The genomes of the isolates encoded a broad suite of carbohydrate-active enzymes, peptidases and transporters. In the extracellular proteome, only Ewingella americana expressed chitinases while the two Pseudomonas isolates attacked chitin by lytic chitin monooxygenase, deacetylation and deamination. Variovorax sp. expressed enzymes acting on the side-chains of various glucans and the chitin backbone. Surprisingly, despite its genomic potential, Pedobacter sp. did not produce extracellular proteins to decompose fungal mycelia but presumably feeds on simple substrates. The ecological roles of the five individual strains exhibited complementary features for a fast and efficient decomposition of dead fungal biomass by the entire bacterial community.  相似文献   

3.
Plant class IV chitinases have a small amino‐terminal chitin‐binding domain and a larger chitinase domain, and are involved in plant defence against fungal infection. Our previous work on the chitinases ChitA and ChitB from the model monocotyledon Zea mays showed that the chitin‐binding domain is removed by secreted fungal proteases called fungalysins. In this article, we extend this work to dicotyledons. The effects of fungalysin‐like proteases on four class IV chitinases from the model dicotyledon Arabidopsis thaliana were analysed. Four Arabidopsis chitinases were heterologously expressed in Pichia pastoris, purified and shown to have chitinase activity against a chitohexaose (dp6) substrate. The incubation of these four chitinases with Fv‐cmp, a fungalysin protease secreted by Fusarium verticillioides, resulted in the truncation of AtchitIV3 and AtchitIV5. Moreover, incubation with secreted proteins from Alternaria brassicae, a pathogen of A. thaliana and brassica crops, also led to a similar truncation of AtchitIV3 and AtchitIV4. Our finding that class IV chitinases from both dicotyledons (A. thaliana) and monocotyledons (Z. mays) are truncated by proteases secreted by specialized pathogens of each plant suggests that this may be a general mechanism of plant–fungal pathogenicity.  相似文献   

4.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

5.
Fungal diseases of plants continue to contribute to heavy crop losses in spite of the best control efforts of plant pathologists. Breeding for disease-resistant varieties and the application of synthetic chemical fungicides are the most widely accepted approaches in plant disease management. An alternative approach to avoid the undesired effects of chemical control could be biological control using antifungal bacteria that exhibit a direct action against fungal pathogens. Several biocontrol agents, with specific fungal targets, have been registered and released in the commercial market with different fungal pathogens as targets. However, these have not yet achieved their full commercial potential due to the inherent limitations in the use of living organisms, such as relatively short shelf life of the products and inconsistent performance in the field. Different mechanisms of action have been identified in microbial biocontrol of fungal plant diseases including competition for space or nutrients, production of antifungal metabolites, and secretion of hydrolytic enzymes such as chitinases and glucanases. This review focuses on the bacterial chitinases that hydrolyze the chitinous fungal cell wall, which is the most important targeted structural component of fungal pathogens. The application of the hydrolytic enzyme preparations, devoid of live bacteria, could be more efficacious in fungal control strategies. This approach, however, is still in its infancy, due to prohibitive production costs. Here, we critically examine available sources of bacterial chitinases and the approaches to improve enzymatic properties using biotechnological tools. We project that the combination of microbial and recombinant DNA technologies will yield more effective environment-friendly products of bacterial chitinases to control fungal diseases of crops.  相似文献   

6.
Plant chitinases have been known as pathogenesis-related (PR) proteins, but recent studies suggest that they play functional roles during normal plant growth and development. We previously isolated two cDNA clones encoding endochitinases,EuNOD-CHT1 and -CHT2, from the root nodules ofElaeagnus umbellata. These genes show differential expression patterns, with theEuNOD-CHT1 gene being active in the root nodules and meristems, whileEuNOD-CHT2 is preferentially expressed in the infected cells of those nodules. To elucidate the functional roles of these two endochitinases, we have now constitutively expressed each gene in a heterologous plant system,Arabidopsis thaliana. Stable inheritance and expression of the transgenes were confirmed by genomic Southern hybridization and RT-PCR. Our transgenic plants did not differ morphologically from the wild types. However, constitutive expression ofEuNOD-CHT1 and -CHT2 inArabidopsis resulted in increased resistance against a fungal pathogen,Botrytis cinerea, but not against a bacterial agent,Pseudomonas syringae pv. Tomato DC3000. Expression levels were enhanced by both wounding and jasmonic acid treatments (forEuNOD-CHT1), or by jasmonic acid only (forEuNOD-CHT2). These data suggest thatEuNOD-CHT1 and -CHT2 primarily play defensive roles during root nodule development inE. umbellata.  相似文献   

7.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Cotton is an economically important crop worldwide that suffers severe losses due to a wide range of fungal/bacterial pathogens and nematodes. Given its susceptibility to various pathogens, it is important to obtain a broad-spectrum resistance in cotton. Resistance to several fungal and bacterial diseases has been obtained by overexpressing the Non-expressor of Pathogenesis-Related genes-1 (NPR1) in various plant species with apparently minimal or no pleiotropic effects. We examined the efficacy of this approach in cotton by constitutive expression of the Arabidopsis (Arabidopsis thaliana) NPR1 gene. The results show that NPR1-expressing lines exhibited significant resistance to Verticillium dahliae isolate TS2, Fusarium oxysporum f. sp. vasinfectum, Rhizoctonia solani, and Alternaria alternata. Interestingly, the transformants also showed significant resistance to reniform nematodes. Analysis of defense-related, biochemical and molecular responses suggest that when challenged with pathogens or certain systemic acquired resistance-inducing chemicals, the transgenic lines respond to a greater degree compared to the wild-type plants. Importantly, the basal activities of the defense-related genes and enzymes in uninduced transformants were no different than those in their non-transgenic counterparts. The results provide additional evidence supporting the role of NPR1 as an important part of the plant defense system and suggest a means to achieve broad-spectrum resistance to pathogens via genetic engineering.  相似文献   

9.
A limited therapeutic arsenal against increasing clinical disease due to Aspergillus spp. necessitates urgent characterisation of new antifungal targets. Here we describe the discovery of novel, low micromolar chemical inhibitors of Aspergillus fumigatus family 18 plant-type chitinase A1 (AfChiA1) by high-throughput screening (HTS). Analysis of the binding mode by X-ray crystallography confirmed competitive inhibition and kinetic studies revealed two compounds with selectivity towards fungal plant-type chitinases. These inhibitors provide new chemical tools to probe the effects of chitinase inhibition on A. fumigatus growth and virulence, presenting attractive starting points for the development of further potent drug-like molecules.  相似文献   

10.
辽宁碱蓬根际土壤真菌多样性的季节变化及其耐盐性   总被引:1,自引:0,他引:1  
邵璐  姜华 《生态学报》2016,36(4):1050-1057
采用稀释平板法和形态学鉴定法进行了辽宁碱蓬(Suaeda liaotungensis)根际土壤真菌的分离鉴定及季节、盐度对真菌多样性的影响分析。结果表明:春、夏、秋、冬四季辽宁碱蓬根际土壤中的真菌菌落数分别为6410、4180、5730和3340,种类分别为6属13种、9属16种、11属31种、6属12种,共分离鉴定出13属42种真菌;其根际土壤真菌的多样性指数、丰富度指数和均匀度指数,从大到小的次序均为秋夏春冬,3种指数均在秋季达到峰值;多样性指数和丰富度指数差异较大,均匀度指数波动较小,春季和冬季的均匀度指数相近。辽宁碱蓬根际土壤真菌种类明显多于无植被土壤,是无植被土壤的7倍,多样性指数和均匀度指数分别是无植被土壤的4—8倍和1—1.2倍;其根际土壤真菌优势种群包括青霉属(Penicillium)、葡萄穗霉属(Stachybotrys)、枝孢属(Cladosporium)、木霉属(Trichoderma)、曲霉属(Aspergillus)和镰孢属(Fusarium);4个季节的优势菌不尽相同,但均有一个共同的优势菌属青霉属。以Na Cl浓度梯度法制造盐胁迫生境,检测辽宁碱蓬根际土壤真菌对盐胁迫的响应,结果表明:60%左右的菌种能耐受5%以下盐度、15%左右的菌种能耐10%—20%盐度;筛选出了6株高度耐盐菌:细交链孢霉、草酸青霉、产黄青霉、烟曲霉、细极链格孢和赭曲霉,其中最高耐盐菌种赭曲霉可耐20%盐度。创新之处在于以盐度和季节为变量检测辽宁碱蓬根际土壤真菌的种群构成,为其深入研究奠定了理论基础。  相似文献   

11.
Sera from 35 apparently normal humans, 37 compromised human patients, 30 hedgehogs and 30 sheep, were examined for precipitating antibodies to four opportunistic fungi — Absidia corymbifera, Aspergillus fumigatus, Candida albicans and Rhizopus arrhizus — using Counterimmunoelectrophoresis (CIE).Precipitins to A. fumigatus were almost exclusively confined to specimens obtained from the compromised human group (51% of those examined) while Candida precipitating antibodies were detected in the sera of both normal (26%) and compromised (49%) humans and in 10% of the hedgehog specimens. Serum precipitins against the two phycomycetes included in the investigations were rare.Because of the complexity of most fungal antigen extracts, it appears essential that sera be tested against a number of different antigen concentrations if CIE is to be used with confidence in fungal serology.  相似文献   

12.
The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose 6‐phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature or increase in glucose levels (> 4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose 6‐phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence.  相似文献   

13.
Two years atmospheric survey of air-borne Aspergillus was carried out in the environmental conditions of South Assam. The survey revealed a total of 16 different species of Aspergillus with marked seasonal and annual variations. Aspergillus fumigatus was found to be the dominant atmospheric fungal species followed by Aspergillus flavus, Aspergillus niger, etc. Among the sample extracts tested, highest quantity of soluble protein was recorded in Aspergillus fumigatus (95.0 mg/g) whereas highest quantity of soluble carbohydrate (40.8 mg/g) and free amino acid (135.0 mg/g) was recorded in the sample extract of Aspergillus niger per gram of dry weight, respectively. The highest numbers of protein polypeptide bands were detected in the sample extract of Aspergillus fumigatus followed by Aspergillus flavus and lowest in Aspergillus niger. The maximum numbers of immunoglobulin E binding protein fractions were found in Aspergillus fumigatus, followed by Aspergillus flavus, Aspergillus clavatus, etc.  相似文献   

14.
  • Important evidence is reported on the antimicrobial and antagonistic properties of bacterial endophytes in Echinacea purpurea and their role in the modulation of plant synthesis of bioactive compounds. Here, endophytic fungi were isolated from E. purpurea, and the dual culture approach was applied to deepen insights into the complex plant–microbiome interaction network.
  • In vitro experiments were carried out to evaluate the species specificity of the interaction between host (E. purpurea) and non-host (E. angustifolia and Nicotiana tabacum) plant tissues and bacterial or fungal endophytes isolated from living E. purpurea plants to test interactions between fungal and bacterial endophytes.
  • A higher tropism towards plant tissue and growth was observed for both fungal and bacterial isolates compared to controls without plant tissue. The growth of all fungi was significantly inhibited by several bacterial strains that, in turn, were scarcely affected by the presence of fungi. Finally, E. purpurea endophytic bacteria were able to inhibit mycelial growth of the phytopathogen Botrytis cinerea.
  • Bacteria and fungi living in symbiosis with wild Echinacea plants interact with each other and could represent a potential source of bioactive compounds and a biocontrol tool.
  相似文献   

15.
Scheu S  Simmerling F 《Oecologia》2004,139(3):347-353
Fungal feeding soil invertebrates feed on a wide spectrum of fungal species suggesting that mixed diets increase fitness. We investigated relationships between food preferences for seven saprophytic fungal species/forms and fitness parameters (mortality, growth, time to reproduction, reproduction, egg size) in two Collembola species, Folsomia candida and Protaphorura armata. The fungal species/forms studied included the wild type and a melanin-deficient form of Aspergillus fumigatus to investigate the role of melanin in collembolan nutrition. Also, three mixed diets consisting of a preferred fungal species (Cladosporium cladosporioides) and species of intermediate or low food quality were investigated. Both Collembola species preferred similar fungal species/forms as food. Food preference generally matched fitness parameters, i.e. growth and reproduction of Collembola was at a maximum when feeding on preferred fungi. This was not the case for A. fumigatus. The wild type and the melanin-deficient form ranked among the least preferred fungi. Growth and reproduction of Collembola were low when feeding on the wild type but high when feeding on the melanin-deficient form indicating that the Collembola misjudged the food quality of the latter in the preference tests. The results show for the first time that genes driving melanin syntheses (pksP) strongly affect the food quality of fungi for fungal feeding invertebrates. Feeding on mixed diets generally increased growth and reproduction of Collembola except when the diets included toxic species (Penicillium sp.). The results support the nutrient balance hypothesis and also show that the detection of toxic species in the diet is important. They indicate that the widespread generalist feeding mode of Collembola maximizes fitness if toxic fungal species are avoided. The fitness parameters growth, reproduction and time until onset of reproduction were correlated closely but egg volume, which also varied with fungal diet, correlated poorly with the other fitness parameters. Variation in egg size with fungal diet shows that the diet of Collembola may have transgenerational effects.  相似文献   

16.
A quintuple mutant was constructed to delete the entire family of the fungal/plant (class III) chitinases of Aspergillus fumigatus. Only a limited reduction in the total chitinolytic activity was seen for the different chitinase mutants including the quintuple mutant. In spite of this reduction in chitinolytic activity, no growth or germination defects were observed in these chitinase mutants. This result demonstrated that the fungal/plant chitinases do not have an essential role in the morphogenesis of A. fumigatus. A slight diminution of the growth during autolysis was seen for the quintuple mutant suggesting that class III chitinases may play only a nutritional role during this phase of the cycle, retarding fungal death.  相似文献   

17.
Chitinases play an important role in the degradation of the cuticular chitin during the process of ecdysis. In this study, we compared the chitinases of two insect species, Bombyx mori (silkworm) and Helicoverpa armigera (bollworm), to assess the relation between characteristics and chitinase patterns. Differences between two chitinases were observed after purification using ammonium sulfate precipitation, affinity chromatography, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) assay. Although the specific activities of the purified enzymes were different, the purification yields were similar. One band of 88 kDa was observed for B. mori, and the other band of 75 kDa was detected for H. armigera. When a range of properties was tested, it was found that the optimum temperatures of B. mori and H. armigera chitinases were 45 and 50°C, respectively; the optimum pH value was 6.0 for both chitinases. Mn2+ played catalytic role while Cu2+ and SDS strongly inhibited activities of both enzymes. Between two chitinases, differences in K M were also observed. K M of chitinase from silkworm and bollworm was found to be 22.3 and 41.0 μmol/l, respectively. Both the chitinases significantly inhibited the spore germination of two fungal species, Saccharomyces cerevisiae and Penicillium.  相似文献   

18.
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy.  相似文献   

19.
In vitro and in vivo studies were conducted to assess the efficacy of the two microbial chitinases Chi I (from Streptomyces sp.) and Chi II (from Serratia marcescens) on Didymella applanata (Niessl.) Sacc., the fungus which causes spur blight of raspberry (Rubus idaeus L.). D. applanata was isolated from canes of diseased raspberries in a plantation in Novosibirsk, Russia. In vitro, the effective concentration of Chi I that reduced the growth of D. applanata was 0.4 U/ml (p = 0.05), but Chi II had no influence on the growth of the fungus in medium. In inoculation experiments on raspberry canes, both chitinases at the rate 0.5 U/ml reduced fungal development. In plantation where canes were inoculated after spraying with chitinase, fruiting bodies of fungus failed to form in all enzyme treatments, whereas a significant number of these fungal fruiting bodies (12.8 per cm2) developed in control treatments lacking chitinases spraying. The chitinases reduced the size of lesions and limited the infection of internal tissues of canes. Field testing of Chi I under natural conditions showed a significant suppression of the independent spur blight. These studies form the basis for further evaluation of ecologically benign control measures for raspberry spur blight.  相似文献   

20.
Plant endo-β-1,3-glucanases and chitinases inhibit the growth of some fungi and generate elicitor-active oligosaccharides while depolymerizing polysaccharides of mycelial walls. Overexpression of the endo-β-1,3-glucanases and/ or chitinases in transgenic plants provides, in some cases, increased protection against fungal pathogens. However, most of the phytopathogenic fungi that have been tested in vitro are resistant to endo-β-1,3-glucanases and chitinases. Furthermore, some phytopathogenic fungi whose growth is inhibited by these enzymes are able to overcome the effect of these enzymes over a period of hours, indicating an ability of those fungi to adapt to the enzymes. Evidence is presented indicating that fungal pathogens secrete proteins that inhibit selective plant endo-β-1,3-glucanases.A glucanase inhibitor protein (GIP-1) has been purified to homogeneity from the culture fluid of the fungal pathogen of soybeans, Phytophthora sojae f. sp. glycines (Psg), and two basic pathogenesis-related endo-β-1,3-glucanases (EnGLsoy-A and EnGLsoy-B) have been purified from soybean seedlings. GIP-1 inhibits EnGLsoy-A but not EnGLsoy-B. Moreover, GIP-1 does not inhibit endo-β-1,3-glucanases secreted by Psg itself nor does GIP-1 inhibit PR-2c, a pathogenesis-related endo-β-1,3-glucanase of tobacco. Evidence is presented that Psg secretes other GIPs that inhibit other endo-β-1,3-glucanase(s) of soybean. Furthermore, GIP-1 does not exhibit proteolytic activity but does appear to physically bind to EnGLsoy-A. The results reported herein demonstrate specific interactions between gene products of the host and pathogen and establish the need to consider fungal proteins that inhibit plant endo-β-1,3-glucanases when attempting to use the genes encoding endo-β-1,3-glucanases to engineer resistance to fungi in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号