首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether differences in the herbivory tolerance of plant species is related to their abundance in grassland communities and how herbivory and nutrient availability affect competitive balances among plant species through changes in their tolerance. The experimental approach involved a simulated grazing treatment (clipping) of two competitive grass species (Arrhenatherum elatius and Holcus lanatus) and two subordinate forb species (Prunella vulgaris and Lotus corniculatus) along a gradient of nutrient availability and under conditions of competition. Total standing, aboveground, root, and regrowth biomass were evaluated at the end of the experiment as an estimate of the capacity to compensate for twice removing aboveground biomass at different nutrient levels (NPK). Although clipping had a more pronounced negative effect on dominant plant species (Arrhenatherum and Holcus) than on subordinate species, the negative effects on dominant species were offset by the application of fertilizer. The combined effect of fertilizer and competition had more negative effects on the performance of Lotus and Prunella than on the dominant species. In terms of competition, the regrowth ability of Arrhenatherum and Holcus increased with the application of fertilizer, while the opposite pattern was observed for Lotus and Prunella. The addition of fertilizer has a positive effect on both grass species in terms of growth in clipped pots and competition, while subordinate species did not respond to the addition of fertilizer to the clipped pots and were negatively affected by competition with both grass species. The results suggest (1) that species replacement towards subordinate species as a function of herbivory is partially dependent on the herbivory tolerance of that species, (2) competitive relations between competitive grass species and subordinate forb species change under different environmental conditions, and (3) although grazing disturbance significantly influences competitive relations in favor of less competitive species, increasing nutrient levels counteract the negative effect of grazing on dominant competitive plant species.  相似文献   

2.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

3.
The plant available manganese concentration (Mn2+) of salt-marsh sediments was compared to that of acidic and neutral soils. The mean soil-manganese concentration was higher in the top 1 cm of salt-marsh soil than in the neutral soil and comparable to that of the acidic soil (0–5 cm). A peak in the soil-manganese concentration in the upper marsh was observed one week after the spring tide but this effect was not evident in the lower marsh. Despite these differences, there was no correlation between mean manganese concentration and position on the marsh.The response to manganese of salt-marsh halophytes was studied by measuring growth and root elongation in a range of Mn2+ concentrations with and without sodium chloride. Although there was a differential response to manganese between salt-marsh species, manganese resistance was not related to position on the marsh. Most of the species investigated were tolerant of Mn2+ at concentrations higher than normally recommended for plant growth. Moreover a salt-marsh ecotype of Festuca rubra was found to have a higher manganese resistance than an inland ecotype of the same species.When sodium chloride was included in the growth medium, salt-marsh plants had a greatly increased resistance to manganese associated with a reduced uptake. This effect is reflected in the tissue-manganese concentration which was lower than in Deschampsia flexuosa although both groups of plants were exposed to a similar range of Mn2+ concentrations. It is concluded that sodium chloride markedly reduces the phytotoxicity of manganese in salt marshes.Nomenclature following Clapham, Tutin & Warburg (1968). Flora of the British Isles.The work was carried out while one of us (C. E. Singer) was in receipt of an SERC studentship, which is gratefully acknowledged.  相似文献   

4.
Salt-impacted soils resulting from oilfield brine spills are increasingly becoming a significant problem in oil-producing areas of Canada such as Alberta and Saskatchewan. The native halophyte Atriplex patula is being considered a potential species for phytoremediation of brine-impacted sites in these hemiboreal climactic zones. The objective of this study was to investigate the optimal seeding conditions under field conditions (with no irrigation) of A. patula for phytoremediation of salt from a brine-impacted site. Atriplex patula was identified in preliminary greenhouse trials to have one of the highest salt accumulations in relation to plant yields. Different seeding methods of A. patula were assessed in an attempt to achieve reproducible growth of this species. While plant yields for A. patula were improved on compacted soil by approximately 30-50%, growth was uneven with regard to density and height. The uneven growth may be due to seed quality and low precipitation during the field season, while improvements in plant yield on compact soil might be due to a lack of competition with other species.  相似文献   

5.
Kuijper DP  Nijhoff DJ  Bakker JP 《Oecologia》2004,141(3):452-459
Competition models including competition for light predict that small plant species preferred by herbivores will be outshaded by taller unpreferred plant species with increasing productivity. When the tall plant species is little grazed by the herbivores, it can easily invade and dominate short vegetation. The tall-growing grass Elymus athericus dominates the highly productive stages of a salt-marsh succession in Schiermonnikoog and is not preferred by the herbivores which occur there, hares and geese. We studied how interspecific competition and herbivory affected performance during early establishment of this species with increasing productivity. Seedlings were planted in the field in a full factorial design, manipulating both interspecific competition and herbivory. The experiment was replicated along a natural productivity gradient. Competition reduced aboveground biomass production and decreased the number of ramets that were produced but did not affect survival of seedlings. The negative effects of competition on seedling performance increased with increasing productivity. In contrast to our expectations, herbivory strongly reduced seedling survival, especially at the unproductive sites and had only small effects on seedling growth. The present study shows that unpreferred tall-growing species cannot easily invade vegetation composed of short preferred species. Grazing by (intermediate-sized) herbivores can prevent establishment at unproductive sites, and increased competition can prevent a rapid invasion of highly productive sites. Herbivores can have a long-lasting impact on vegetation succession by preventing the establishment of tall-growing species, such as E. athericus, in a window of opportunity at young unproductive successional stages.Plant nomenclature follows Van der Meijden et al. (1990)  相似文献   

6.
Coexistence of N2-fixing legumes and non-legume trees with grasses in African savannas results in intense competition between these life-forms. We hypothesised that belowground competition might induce different nutritional constraints in N2- versus non-N2-fixing species. A field (Hluhluwe-imFolozi nature reserve, South Africa) competition experiment with two N2-fixing legume species (Acacia burkei and Acacia karroo) and two non-N2-fixing species (Schotia brachypetala and Spirostachys africana) both with clipped grass and without grass was established. Plants were supplied with no fertilizer, or generous amounts of fertilizer (200?kg?N?ha?1, 100?kg P2O5 ha?1, 7.1?kg K2O ha?1) supplied as either 28?C10 (N?CK), P or a combination of these fertilizers (NPK). Regularly clipped grass suppressed growth (by more than 90?%) of both N2- and non-N2-fixing seedlings equally. Biomass accumulation of seedlings grown with grass and the grasses themselves responded positively to NK and/or NPK, but not P, although P-fertilization did have effects on foliar [N] and ??15N values of trees and grasses showing that plants accessed the fertilizer. Tree ??15N values and foliar [N] were also modified by NPK, demonstrating access to fertilizer. However, the ameliorative effects of NPK on grass competition-induced biomass suppression were only partial. This may be due to ??non-resource competition?? (i.e. root gaps) imposed by dense grass roots. The fact that nutrients were able to partially ameliorate the effects of grass competition, however, indicates that such ??non-resource competition?? may be partially overcome by even more generous supply of fertilizers.  相似文献   

7.
Nutrient deficiency is commonly a limiting factor in reconstructing ecosystems on disturbed areas such as mines, quarries, and construction sites. An open‐cut coal mine in southeastern Australia is being used as a model to explore strategies for reconstructing a sustainable forest ecosystem on a spoil substrate. This study aimed to identify the nutrients limiting forest establishment and ways of ameliorating these. A pot trial, using two endemic Myrtaceae tree species, found that nitrogen was the most growth‐limiting nutrient followed by phosphorus. To overcome these spoil nutrient deficiencies, a field trial compared the application of forest topsoil to the addition of two rates of inorganic fertilizer, gypsum, or biosolids on the response of a range of native forest plant species directly seeded into the substrate. Only biosolids significantly increased total nitrogen levels in the spoil. However, all treatments significantly decreased spoil pH, thereby increasing nutrient availability. Topsoil produced the highest plant density of native species due to contributions from its seed bank. Biosolids increased growth of Corymbia maculata. The higher rate of fertilizer addition improved seedling establishment of Mimosaceae and the survival of Myrtaceae species. High nutrient treatments increased weed and grass densities, which may have reduced the nutrient benefit for native species. In conclusion, biosolids and the high rate of fertilizer application ameliorated the nitrogen and phosphorus deficiency of spoil to support growth and survival of reintroduced native species. However, potential benefits were attenuated by competition from accompanying weed growth that could be managed by implementing a control program.  相似文献   

8.
以湖北当阳柑橘园杂草群落为对象,研究绿肥种植(自然生草和间种光叶苕子)下配施减量氮肥处理(当地推荐施氮肥量的0%、70%、85%、100%)对橘园杂草群落组成和多样性的影响,并运用Pearson相关分析和典范对应分析探究土壤因子对不同处理下杂草多样性和物种组成的影响。结果显示:(1)经样方调查,试验区共记录杂草植物21科29属30种,以禾本科和菊科为主,稗(Echinochloa crusgalli(L.)Beauv.)、酢浆草(Oxalis corniculata L.)、野老鹳草(Geranium carolinianum L.)等是所有处理中的共有种,自然生草下以匙叶鼠麴草(Gnaphalium pensylvanicum Willd.)和稗为优势种,间种光叶苕子(Vicia villosa Roth.var.glabrescens Koch.)下以酢浆草为优势种;(2)不同氮肥施入量下柑橘园草本物种Margalef指数、Patrick指数、Shannon-Wiener多样性指数和Pielou均匀度指数均无显著差异;相同施肥量下,间种光叶苕子能显著降低柑橘园杂草群落的物种多样性指数;(3)速效磷是显著影响柑橘园草本植物多样性指数的土壤因子;(4)不同处理下影响杂草物种分布的主要土壤因子是速效磷、pH值、含水率和温度。本研究认为无论减施氮肥与否,间种光叶苕子比自然生草更能显著降低杂草群落的物种多样性,从而避免恶性杂草与果树争肥。  相似文献   

9.
Salt-spray stimulated growth in strand-line species   总被引:2,自引:0,他引:2  
The response to salt spray and soil salinity of two sand dune strandline species ( Cakile maritima Scop. and Salsola kali L.) and two salt marsh strand-line species ( Atriplex hastata L. and A. littoralis L.) was compared in sand-compost cultures. The growth of the salt-marsh species remained unaffected, while the growth of the sand dune species Cakile maritima was strongly reduced by NaCl (150 and 300 m M ) absorbed via the root system. All four species were resistant to airborne salinity, and under conditions of low soil fertility, salt spray increased the dry matter production, especially of the sand dune species. Mineral analysis revealed foliar uptake of Na, K, Cl, Ca and Mg. Na and Cl ions absorbed from seawater droplets induced succulence. Both salt spray and soil salt increased the methylated quaternary ammonium compound content in the shoot tissue. Under non-saline conditions a considerable amount of these osmotic solutes was still present, while turgor pressure potential in these plants was rather low. The relation between salt, compatible osmotic solutes, turgor pressure potential and growth is discussed. Next to the major constituents of seawater, Na and Cl, especially magnesium and to a lesser extent, calcium, accumulated in the shoot tissue. Based on the positive growth response of the sand dune species to airborne salt, they should be termed 'aerohalophytes', whereas 'soil halophytes' should be used when referring to the Atriplex species, which are more specifically adapted to the increased salinity of salt marsh soils.  相似文献   

10.
We investigated genetic differentiation among populations of the clonal grass Elymus athericus, a common salt-marsh species occurring along the Wadden Sea coast of Europe. While E. athericus traditionally occurs in the high salt marsh, it recently also invaded lower parts of the marsh. In one of the first analyses of the genetic population structure in salt-marsh species, we were interested in population differentiation through isolation-by-distance, and among strongly divergent habitats (low and high marsh) in this wind- and water-dispersed species. High and low marsh habitats were sampled at six sites throughout the Wadden Sea. Based on reciprocal transplantation experiments conducted earlier revealing lower survival of foreign genotypes we predicted reduced gene flow among habitats. Accordingly, an analysis with polymorphic cross-species microsatellite primers revealed significant genetic differentiation between high and low marsh habitats already on a very small scale (< 100 m), while isolation-by-distance was present only on larger scales (60-443 km). In an analysis of molecular variance we found that 14% of the genetic variance could be explained by the differentiation between habitats, as compared to only 8.9% to geographical (isolation-by-distance) effects among six sites 2.5-443 km distant from each other. This suggests that markedly different selection regimes between these habitats, in particular intraspecific competition and herbivory, result in habitat adaptation and restricted gene flow over distances as small as 80 m. Hence, the genetic population structure of plant species can only be understood when considering geographical and selection-mediated restrictions to gene flow simultaneously.  相似文献   

11.
Summary Greenhouse and field experiments were conducted on the effect of VA mycorrhiza (VAM) on the growth of cassava, various tropical grass and legume species, as well as beans, coffee and tea. A large number of VAM fungal species were evaluated for effectivity in increasing cassava growth and P uptake in acid low-P soils. The effectivity of VAM species and isolates was highly variable and dependent on soil pH and fertilizer applications, as well as on soil temperature and humidity. Two species,Glomus manihotis andEntrophospora colombiana were found to be most effective for a range of crops and pastures, at low pH and at a wide range of N, P, and K levels. At very low P levels nearly all crops and pasture species were highly mycorrhizal dependent, but at higher soil P levels cassava and several pasture legumes were more dependent than grass species. Mycorrhizal inoculation significantly increased cassava and bean yields in those soils with low or ineffective indigenous mycorrhizal populations. In these soils cassava root yields increased on the average 20–25% by VAM inoculation, both at the experiment station and in farmers’ fields. VAM inoculation of various pasture legumes and grasses, in combination with rock phosphate applications, increased their early growth and establishment. Agronomic practices such as fertilization, crop rotations, intercropping and pesticide applications were found to affect both the total VAM population as well as its species composition. While there is no doubt about the importance of VA mycorrhiza in enhancing P uptake and growth of many tropical crops and pastures grown on low-P soils, much more research is required to elucidate the complicated soil-plant-VAM interactions and to increase yields through improved mycorrhizal efficiency.  相似文献   

12.
A balanced fertilizer treatment - equivalent to that optimal for pasture development on the infertile sandy soils of the Coastal Lowlands of south-eastern Queensland - was applied to a heathland stand on North Stradbroke Island in 1968, 3 years after the vegetation had been razed by bushfire. The fertilized and control plots were examined in detail in 1968 (before application of fertilizer), in 1969 and in 1976. Eight years after fertilizer treatment the heath species have declined in density and/or biomass. The native grass, Themeda australis, responded to fertilizer and is expanding into gaps as the heath species die. A few composites and grasses are invading the fertilized plots.  相似文献   

13.
Fungi from geothermal soils in Yellowstone National Park   总被引:1,自引:0,他引:1  
Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70 degrees C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22 degrees C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.  相似文献   

14.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

15.
This paper evaluates the relative performance and competitive ability of seven legumes from the Iberian Peninsula, Spain (one already invasive in Australia), grown singly or pairwise with seven legumes from south‐western Australia in their own soils. Indices of growth used were root, shoot and total mass and shoot dimensions. Water content, xylem water potential during drying and nodule production were also measured. The index of competition used was the intensity of competition coefficient (ICC), which is suitable for additive designs. The Australian species usually grew larger than the Spanish species, in their presence or absence, although the results were sensitive to the index of growth or resource capture used. The Australian legumes usually possessed greater total water content than the co‐occurring Spanish legumes. At least five Australian species were less reduced or not affected at all by inter‐regional competition compared with growth in isolation. Two Australian legumes performed relatively poorly in the presence of at least four Spanish legumes. The ICC identified many instances of growth promotion (facilitation) of the Australian species, which we attribute to extra nitrogen obtained through enhanced nodulation of both cohabiting species. Five of the seven Spanish species were outcompeted by the Australian species, whereas the growth of two was sometimes facilitated. Although the Spanish legumes had greater competitive ability in the more fertile Australian soils, they remained competitively inferior to the Australian legumes in their first season of growth and none is likely to displace the native legumes at this stage of growth. Longer‐term field studies are needed to fully evaluate the potential invasiveness of perennial legumes.  相似文献   

16.
GORHAM  A. V.; GORHAM  E. 《Annals of botany》1955,19(4):571-577
Analyses for iron, manganese, ash, and nitrogen are recordedfor some plants from salt marshes and shingle hooks. Ash ismuch higher, and iron and manganese are much lower, than inplants from underwater lake muds, woodland soils of varyinghumus content and acidity, and semi-aquatic marsh, fen, andbog soils. Since both lake muds and salt-marsh soils are deficientin oxygen, with iron and manganese presumably mobile as divalentions, the difference in concentration of the two elements inplants from the two types of habitat requires explanation. Itis suggested that the much greater total ion concentration ofthe salt-marsh soil solution may depress iron and manganeseassimilation through ionic antagonism.  相似文献   

17.
Savanna tree species vary in the magnitude of their response to grass competition, but the functional traits that explain this variation remain largely unknown. To address this gap, we grew seedlings of 10 savanna tree species with and without grasses in a controlled greenhouse experiment. We found strong interspecific differences in tree competitive response, which was positively related to photosynthesis rates, suggesting a trade‐off between the ability to grow well under conditions of low and high grass biomass across tree species. We also found no competitive effect of tree seedlings on grass, suggesting strong tree‐grass competitive asymmetry. Our results identify a potentially important trade‐off that enhances our ability to predict how savanna tree communities might respond to variation in grass competition.  相似文献   

18.
Salt grass is an important pioneer plant in early stages of succession. The sharp-pointed rhizomes with numerous epidermal silica cells, and the aerenchymatous network of the rhizome, leaf sheath, and roots facilitate development of the plant in heavy clays, shales, and inundated soils. In salt marshes of southern Utah, salt grass contributes to a hummock-building process that favors localized removal of salts by capillary action and evaporation. This process provides a narrow strip of soil that is favorable for the rooting of extended rhizomes. In laboratory experiments, maximum growth for Distichlis spicata, a perennial salt marsh grass, was obtained at 15,000 ppm soluble salts in nutrient solution cultures. Comparable concentrations of salts occurred in soils of the habitat from which plants were taken. Nearly equal concentrations of sodium and potassium were found in the plant tissue where the growth of the plants was optimal; such a ratio was maintained in the plants during most of the growing season. In the field the greatest amount of growth of salt grass takes place when temperatures are cool and soil moisture is quite high during the early spring. During mid-summer as air temperatures rise, crude protein in the plant decreases. During periods of high salt and water stress, morphological and anatomical adaptations of the stomata, salt glands, and trichomes of salt grass are important for survival. Stomata on exposed ridges of vascular bundles, where desiccation is greatest, usually are covered by four epidermal cells. In contrast, stomata found in the grooves between vascular bundles tend to be uncovered. The salt gland is composed of a large basal cell and a cap cell and actively excretes (in a diurnal rhythm) excess sodium, potassium, and chloride ions. A mechanism for salt excretion from this gland is postulated. The silica-containing trichomes on the leaves may play a role in cooling the leaf under conditions of high solar radiation and also serve to protect the plant against attack by herbivores.  相似文献   

19.
J. P. Bakker 《Plant Ecology》1985,62(1-3):391-398
Grazing an abandoned salt marsh causes retrogressive succession, since mid salt-marsh communities change into lower salt-marsh communities. Grazing and mowing are compared in detail. Both management practices enhance species diversity in an abandoned salt marsh. This can be attributed to the removal of litter. The finding that lower salt-marsh species appear more with grazing than with mowing or abandoning is not related to a higher soil salinity as compared to mowing or abandoning, but probably to locally baring of the soil by grazing animals. Only species of pioneer or unstable environments seem to have a persistent seed bank, for other species seed dispersal seems to be a limiting factor for their establishment.Nomenclature follows Heukels & van Ooststroom (1977) for species; Westhoff & den Held (1969) for syntaxa.Mrs R. Rusthoven analyzed the soil samples, Mr E. Leeuwinga drawed the figures, and Mrs J. O'Brien corrected the English text.  相似文献   

20.
Habitat segregation allows recently diverged taxa to minimize competition and maximize fitness. Consequently, the overall distribution of a species in part will be determined by interactions with their close relatives. Two recently diverged but hybridizing field crickets, Gryllus firmus and G. pennsylvanicus , form a mosaic hybrid zone in Connecticut in which each species is associated with a specific soil type: G. firmus is found on sand soils and G. pennsylvanicus is found on loam soils. Both species produce diapausing eggs, which spend the winter in the ground. We investigate how viability selection on overwintering eggs in different soils influences the distributions of the two species, habitat partitioning between them, and the structure of the mosaic hybrid zone. Our results suggest that selection on eggs by soil types is not important in determining the success of crickets on different soils. However, winter climate has a strong effect on egg viability, and variation in egg survivorship over different winter climate regimes likely plays an important role in determining the distribution of these cricket species and the position of the hybrid zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号