共查询到20条相似文献,搜索用时 125 毫秒
1.
Desulfitobacterium dehalogenans grew with formate as the electron donor and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) as the electron acceptor, yielding Y(X/formate), Y(X/2e), and Y(X/ATP) ranging from 3.2 to 11.3 g of biomass (dry weight)/mol, thus indicating that energy was conserved through reductive dechlorination. Pyruvate was utilized as the electron donor and acceptor, yielding stoichiometric amounts of acetate and lactate, respectively, and a Y(X/reduced acceptor) of 13.0 g of biomass (dry weight)/mol. The supplementation of pyruvate-containing medium with additional electron acceptors, such as 3-Cl-4-OHPA, nitrate, fumarate, or sulfite, caused pyruvate to be replaced as the electron acceptor and nearly doubled the Y(X/ATP) (Y(X/acetate formed)). A comparison of the yields for 3-Cl-4-OHPA with those for other traditional electron acceptors indicates that the dehalogenation reaction led to the formation of similar amounts of energy equivalents. The various electron acceptors were used concomitantly with 3-Cl-4-OHPA in nonacclimated cultures, but the utilization rates and amounts utilized differed. 相似文献
2.
Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans 总被引:1,自引:0,他引:1
van de Pas BA Jansen S Dijkema C Schraa G de Vos WM Stams AJ 《Applied and environmental microbiology》2001,67(9):3958-3963
The amount of energy that can be conserved via halorespiration by Desulfitobacterium dehalogenans JW/IU-DC1 was determined by comparison of the growth yields of cells grown with 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) and different electron donors. Cultures that were grown with lactate, pyruvate, formate, or hydrogen as an electron donor and Cl-OHPA as an electron acceptor yielded 3.1, 6.6, 1.6, and 1.6 g (dry weight) per mol of reduction equivalents, respectively. Fermentative growth on pyruvate yielded 14 g (dry weight) per mol of pyruvate oxidized. Pyruvate was not fermented stoichiometrically to acetate and lactate, but an excess of acetate was produced. Experiments with 13C-labeled bicarbonate showed that during pyruvate fermentation, approximately 9% of the acetate was formed from the reduction of CO2. Comparison of the growth yields suggests that 1 mol of ATP is produced per mol of acetate produced by substrate-level phosphorylation and that there is no contribution of electron transport phosphorylation when D. dehalogenans grows on lactate plus Cl-OHPA or pyruvate plus Cl-OHPA. Furthermore, the growth yields indicate that approximately 1/3 mol of ATP is conserved per mol of Cl-OHPA reduced in cultures grown in formate plus Cl-OHPA and hydrogen plus Cl-OHPA. Because neither formate nor hydrogen nor Cl-OHPA supports substrate-level phosphorylation, energy must be conserved through the establishment of a proton motive force. Pyruvate ferredoxin oxidoreductase, lactate dehydrogenase, formate dehydrogenase, and hydrogenase were localized by in vitro assays with membrane-impermeable electron acceptors and donors. The orientation of chlorophenol-reductive dehalogenase in the cytoplasmic membrane, however, could not be determined. A model is proposed, which may explain the topology analyses as well as the results obtained in the yield study. 相似文献
3.
Energy Yield of Respiration on Chloroaromatic Compounds in Desulfitobacterium dehalogenans 下载免费PDF全文
Bram A. van de Pas Stefan Jansen Cor Dijkema Gosse Schraa Willem M. de Vos Alfons J. M. Stams 《Applied microbiology》2001,67(9):3958-3963
The amount of energy that can be conserved via halorespiration by Desulfitobacterium dehalogenans JW/IU-DC1 was determined by comparison of the growth yields of cells grown with 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) and different electron donors. Cultures that were grown with lactate, pyruvate, formate, or hydrogen as an electron donor and Cl-OHPA as an electron acceptor yielded 3.1, 6.6, 1.6, and 1.6 g (dry weight) per mol of reduction equivalents, respectively. Fermentative growth on pyruvate yielded 14 g (dry weight) per mol of pyruvate oxidized. Pyruvate was not fermented stoichiometrically to acetate and lactate, but an excess of acetate was produced. Experiments with 13C-labeled bicarbonate showed that during pyruvate fermentation, approximately 9% of the acetate was formed from the reduction of CO2. Comparison of the growth yields suggests that 1 mol of ATP is produced per mol of acetate produced by substrate-level phosphorylation and that there is no contribution of electron transport phosphorylation when D. dehalogenans grows on lactate plus Cl-OHPA or pyruvate plus Cl-OHPA. Furthermore, the growth yields indicate that approximately 1/3 mol of ATP is conserved per mol of Cl-OHPA reduced in cultures grown in formate plus Cl-OHPA and hydrogen plus Cl-OHPA. Because neither formate nor hydrogen nor Cl-OHPA supports substrate-level phosphorylation, energy must be conserved through the establishment of a proton motive force. Pyruvate ferredoxin oxidoreductase, lactate dehydrogenase, formate dehydrogenase, and hydrogenase were localized by in vitro assays with membrane-impermeable electron acceptors and donors. The orientation of chlorophenol-reductive dehalogenase in the cytoplasmic membrane, however, could not be determined. A model is proposed, which may explain the topology analyses as well as the results obtained in the yield study. 相似文献
4.
Development of a Gene Cloning and Inactivation System for Halorespiring Desulfitobacterium dehalogenans 下载免费PDF全文
Efficient host-vector systems have been developed for the versatile, strictly anaerobic, halo- and fumarate-respiring gram-positive bacterium Desulfitobacterium dehalogenans. An electroporation-based transformation procedure resulting in approximately 103 to 104 transformants per μg of the cloning vector pIL253 was developed and validated. The broad-host-range vector pG+host9 was shown to replicate at a permissive temperature of 30°C, whereas the replicon was not functional at 40°C. The D. dehalogenans frdCAB operon, predicted to encode a fumarate reductase, was cloned, characterized, and targeted for insertional inactivation by pG+host9 carrying a 0.6-kb internal frdA fragment. Single-crossover integration at the frdA locus occurred at a frequency of 3.3 × 10−4 per cell and resulted in partially impaired fumarate reductase activity. The gene cloning and inactivation systems described here provide a solid basis for the further elucidation of the halorespiratory network in D. dehalogenans and allow for its further exploitation as a dedicated degrader. 相似文献
5.
Efficient host-vector systems have been developed for the versatile, strictly anaerobic, halo- and fumarate-respiring gram-positive bacterium Desulfitobacterium dehalogenans. An electroporation-based transformation procedure resulting in approximately 10(3) to 10(4) transformants per microg of the cloning vector pIL253 was developed and validated. The broad-host-range vector pG+host9 was shown to replicate at a permissive temperature of 30 degrees C, whereas the replicon was not functional at 40 degrees C. The D. dehalogenans frdCAB operon, predicted to encode a fumarate reductase, was cloned, characterized, and targeted for insertional inactivation by pG+host9 carrying a 0.6-kb internal frdA fragment. Single-crossover integration at the frdA locus occurred at a frequency of 3.3 x 10(-4) per cell and resulted in partially impaired fumarate reductase activity. The gene cloning and inactivation systems described here provide a solid basis for the further elucidation of the halorespiratory network in D. dehalogenans and allow for its further exploitation as a dedicated degrader. 相似文献
6.
7.
Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis 总被引:1,自引:0,他引:1 下载免费PDF全文
This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)—Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135–149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense. 相似文献
8.
Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants 下载免费PDF全文
To allow for the molecular analysis of halorespiration by the strictly anaerobic gram-positive bacterium Desulfitobacterium dehalogenans, halorespiration-deficient mutants were selected and characterized following insertional mutagenesis by the conjugative transposon Tn916. To facilitate rapid screening of transconjugants, a highly efficient method for the growth of single colonies on solidified medium has been developed. A streptomycin-resistant mutant of D. dehalogenans was isolated and mated with Enterococcus faecalis JH2-2 carrying Tn916. Insertion of one or two copies of Tn916 into the chromosome of D. dehalogenans was observed. From a total of 2,500 transconjugants, 24 halorespiration-deficient mutants were selected based upon their inability to use 3-chloro-4-hydroxyphenylacetic acid as an electron acceptor. Physiological characterization led to the definition of three phenotypic classes of mutants that differed in their ability to use the additional terminal electron acceptors nitrate and fumarate. The activities of hydrogenase and formate dehydrogenase were determined, and the transposon insertion sites in selected mutants representing the different classes were analyzed on the sequence level following amplification by inverse PCR. The results of the molecular characterization as well as the pleiotropic phenotypes of most mutants indicate that genes coding for common elements shared by the different respiratory chains present in the versatile D. dehalogenans have been disrupted. 相似文献
9.
Thomas Kruse Bram A. van de Pas Ariane Atteia Klaas Krab Wilfred R. Hagen Lynne Goodwin Patrick Chain Sjef Boeren Farai Maphosa Gosse Schraa Willem M. de Vos John van der Oost Hauke Smidt Alfons J. M. Stams 《Journal of bacteriology》2015,197(5):893-904
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. 相似文献
10.
Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors 总被引:6,自引:10,他引:6 下载免费PDF全文
A. M. Laverman J. S. Blum J. K. Schaefer E. Phillips D. R. Lovley R. S. Oremland 《Applied microbiology》1995,61(10):3556-3561
The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors. 相似文献
11.
Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors 总被引:2,自引:1,他引:1 下载免费PDF全文
Shaun M. Baesman Thomas D. Bullen James Dewald Donghui Zhang Seamus Curran Farhana S. Islam Terry J. Beveridge Ronald S. Oremland 《Applied microbiology》2007,73(7):2135-2143
Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [] = −0.4 to −1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (~10-nm diameter by 200-nm length), which cluster together, forming larger (~1,000-nm) rosettes composed of numerous individual shards (~100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. 相似文献
12.
Skorokhodova A. Yu. Gulevich A. Yu. Debabov V. G. 《Applied Biochemistry and Microbiology》2021,57(7):793-799
Applied Biochemistry and Microbiology - The characteristics of anaerobic glucose utilization and metabolite production by recombinant Escherichia coli strains with impaired fermentation ability... 相似文献
13.
B A van de Pas H Smidt W R Hagen J van der Oost G Schraa A J Stams W M de Vos 《The Journal of biological chemistry》1999,274(29):20287-20292
ortho-Chlorophenol reductive dehalogenase of the halorespiring Gram-positive Desulfitobacterium dehalogenans was purified 90-fold to apparent homogeneity. The purified dehalogenase catalyzed the reductive removal of a halogen atom from the ortho position of 3-chloro-4-hydroxyphenylacetate, 2-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, pentachlorophenol, and 2-bromo-4-chlorophenol with reduced methyl viologen as electron donor. The dechlorination of 3-chloro-4-hydroxyphenylacetate was catalyzed by the enzyme at a Vmax of 28 units/mg protein and a Km of 20 microM. The pH and temperature optimum were 8.2 and 52 degrees C, respectively. EPR analysis indicated one [4Fe-4S] cluster (midpoint redox potential (Em) = -440 mV), one [3Fe-4S] cluster (Em = +70 mV), and one cobalamin per 48-kDa monomer. The Co(I)/Co(II) transition had an Em of -370 mV. Via a reversed genetic approach based on the N-terminal sequence, the corresponding gene was isolated from a D. dehalogenans genomic library, cloned, and sequenced. This revealed the presence of two closely linked genes: (i) cprA, encoding the o-chlorophenol reductive dehalogenase, which contains a twin-arginine type signal sequence that is processed in the purified enzyme; (ii) cprB, coding for an integral membrane protein that could act as a membrane anchor of the dehalogenase. This first biochemical and molecular characterization of a chlorophenol reductive dehalogenase has revealed structural resemblance with haloalkene reductive dehalogenases. 相似文献
14.
Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients 总被引:5,自引:2,他引:5
Beate Kpke Reinhard Wilms Bert Engelen Heribert Cypionka Henrik Sass 《Applied microbiology》2005,71(12):7819-7830
Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m. Most-probable-number (MPN) series were prepared with a variety of different carbon substrates, each at a low concentration, in combination with different electron acceptors such as iron and manganese oxides. These achieved remarkably high cultivation efficiencies (up to 23% of the total cell counts) along the upper 200 cm. In the deeper sediment layers, MPN counts dropped significantly. Parallel to the liquid enrichment cultures in the MPN series, gradient cultures with embedded sediment subcores were prepared as an additional enrichment approach. In total, 112 pure cultures were isolated; they could be grouped into 53 different operational taxonomic units (OTU). The isolates belonged to the Proteobacteria, “Bacteroidetes,” “Fusobacteria,” Actinobacteria, and “Firmicutes.” Each cultivation approach yielded a specific set of isolates that in general were restricted to this single isolation procedure. Analysis of the enrichment cultures by PCR and denaturing gradient gel electrophoresis revealed an even higher diversity in the primary enrichments that was only partially reflected by the culture collection. The majority of the isolates grew well under anoxic conditions, by fermentation, or by anaerobic respiration with nitrate, sulfate, ferrihydrite, or manganese oxides as electron acceptors. 相似文献
15.
Growth of a Dehalococcoides-Like Microorganism on Vinyl Chloride and cis-Dichloroethene as Electron Acceptors as Determined by Competitive PCR 下载免费PDF全文
A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 ± 1.5) × 108 copies of the 16S rRNA gene/μmol of Cl− (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate () was determined to be 7.8 × 10−10 μmol of Cl− (copy−1 day−1), indicating a maximum growth rate of 0.4 day−1. These average growth yield and values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day−1) and no-growth (0.09 day−1) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies. 相似文献
16.
Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L 总被引:1,自引:8,他引:1 下载免费PDF全文
Transfer of electrons from the cytosol of bean (Phaseolus vulgaris L.) root cells to extracellular acceptors such as ferricyanide and FeIIIEDTA causes a rapid depolarization of the membrane potential. This effect is most pronounced (30-40 millivolts) with root cells of Fe-deficient plants, which have an increased capacity to reduce extracellular ferric salts. Ferrocyanide has no effect. In the state of ferricyanide reduction, H+ (1H+/2 electrons) and K+ ions are excreted. The reduction of extracellular ferric salts by roots of Fe-deficient bean plants is driven by cellular NADPH (Sijmons, van den Briel, Bienfait 1984 Plant Physiol 75: 219-221). From this and from the membrane potential depolarization, we conclude that trans-plasma membrane electron transfer from NADPH is the primary process in the reduction of extracellular ferric salts. 相似文献
17.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors for reductase chains of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the δ-proteobacterium Geobacter sulfurreducens AM-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydrogenation of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens AM-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed. 相似文献
18.
Humic Acids as Electron Acceptors for Anaerobic Microbial Oxidation of Vinyl Chloride and Dichloroethene 总被引:6,自引:2,他引:6 下载免费PDF全文
Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2-14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought. 相似文献
19.
Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production 总被引:6,自引:4,他引:6 下载免费PDF全文
D. H. Park M. Laivenieks M. V. Guettler M. K. Jain J. G. Zeikus 《Applied microbiology》1999,65(7):2912-2917
Electrically reduced neutral red (NR) served as the sole source of reducing power for growth and metabolism of pure and mixed cultures of H2-consuming bacteria in a novel electrochemical bioreactor system. NR was continuously reduced by the cathodic potential (−1.5 V) generated from an electric current (0.3 to 1.0 mA), and it was subsequently oxidized by Actinobacillus succinogenes or by mixed methanogenic cultures. The A. succinogenes mutant strain FZ-6 did not grow on fumarate alone unless electrically reduced NR or hydrogen was present as the electron donor for succinate production. The mutant strain, unlike the wild type, lacked pyruvate formate lyase and formate dehydrogenase. Electrically reduced NR also replaced hydrogen as the sole electron donor source for growth and production of methane from CO2. These results show that both pure and mixed cultures can function as electrochemical devices when electrically generated reducing power can be used to drive metabolism. The potential utility of utilizing electrical reducing power in enhancing industrial fermentations or biotransformation processes is discussed. 相似文献
20.
Relationship Between Energy Substrate Utilization and Specific Growth Rate in Aspergillus nidulans 下载免费PDF全文
The maintenance coefficient of glucose-limited Aspergillus nidulans chemostat cultures at 30 C was 0.018 g per g (dry weight) per hr for glucose and 0.55 mmoles per g (dry weight) per hr for oxygen. These values can only be approximate because melanin was produced by the mold at low growth rates and because it is unlikely that this polymer contributed to the maintenance energy requirement although it contributed to the dry weight. Biomass (defined here as dry weight minus melanin) was used to calculate a more meaningful maintenance coefficient for glucose (0.029 g of glucose per g of biomass per hr). At the highest growth rates examined, a nonlinear relationship between growth rate and glucose utilization rate was obtained, suggesting a qualitative change in the metabolic activities of the mold at high growth rates. The oxidative capacity of the mold was highest at the highest growth rates. This observation indicates that the increased substrate utilization rate observed at the higher growth rates is a reflection of enhanced enzyme synthesis. This hypothesis was verified by assaying the specific activities of several enzymes at different growth rates. However, in contrast to all the other enzymes assayed, the activities of reduced nicotinamide adenine dinucleotide phosphate: (acceptor) oxido-reductases were highest at the lowest growth rates. 相似文献