首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalently cross-linked multimers of lipocortin I are shown to be present in human epidermoid carcinoma A431 cells treated with epidermal growth factor or the calcium ionophore A23187. This intracellular cross-linking of lipocortin I is suggested to be mediated by the action of tissue transglutaminase, a Ca2(+)-dependent protein cross-linking enzyme. Cross-linking of lipocortin I competes with proteolytic digestion of the protein, and pretreatment of the cells with inhibitors for calpain (Ca2(+)-dependent intracellular protease) markedly enhanced the cross-linking of lipocortin I. Cross-linked lipocortin I is shown to be present in the soluble fraction of A431 cells as well as in the particulate fraction; a 34-kDa fragment of lipocortin I was solubilized successfully by plasmin digestion of the latter fraction. Immunofluorescence microscopy using specific antilipocortin-I antibody showed that cross-linked lipocortin I forms an envelope-like structure, which is not extracted with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) or Triton X-100. In vitro incubation of purified lipocortin I with tissue transglutaminase resulted in the formation of covalently cross-linked lipocortin I dimer, tetramer, and so on. Amine incorporation and cross-linking studies using lipocortin I and its N-terminal truncated derivatives indicated that the cross-linking site is localized within the plasmin-susceptible N-terminal 29 amino acids of lipocortin I. The cross-linking of lipocortin I is shown to be accelerated more than 10 times by the addition of phosphatidylserine vesicles, on which lipocortin I molecules are most likely aligned in a conformation suitable for cross-linking. Collectively, these findings suggest that an increase of intracellular calcium concentration results in the attachment of lipocortin I onto the plasma membrane phospholipids through the C-terminal domain of the molecule where the membrane-bound lipocortin I is cross-linked by the action of tissue transglutaminase through the N-terminal domain.  相似文献   

2.
A phospholipid column was prepared by coating siliconized porous glass beads with phospholipids. The analysis of the Ca2+ requirement of lipocortin I and its derivatives in the binding to phospholipids was carried out with this column. The Ca2+ concentration required for 50% binding to the phospholipid column at room temperature was about 30 microM for lipocortin I, while that was reduced to 15 microM when lipocortin I was phosphorylated by the epidermal growth factor receptor/kinase, and a further reduction in the Ca2+ requirement was observed with proteolytic cleavage at the N-terminal region. Cathepsin D and calpain I (low calcium-requiring form of calcium-activated neutral protease) rapidly cleaved human placental lipocortin I at Trp-12 and Lys-26, respectively. These N-terminal-truncated proteins required only 5 microM Ca2+ for 50% binding to the phospholipid column. This enhancement of Ca2+ sensitivity by limited proteolysis was also observed for porcine lung lipocortin I. Essentially the same results were obtained when the Ca2+ sensitivities of the modified lipocortins I were analyzed using dispersed phospholipid vesicles instead of the phospholipid affinity column. Equilibrium dialysis indicated that the release of the N-terminal region markedly increased the affinity of lipocortin I for Ca2+ in the presence of phosphatidylserine, without any appreciable change of the number of Ca2+-binding sites. Limited proteolysis by endogenous proteases such as calpain may be an important regulatory mechanism for the Ca2+ sensitivity of lipocortin I in phospholipid binding.  相似文献   

3.
Two calcium-independent phospholipases isolated from guinea pig pancreas (lipase Ia, 37 kDa) and from guinea pig intestine (phospholipase B, 97 kDa) have been used to probe the mechanism of phospholipase inhibition by lipocortin. In the presence of calcium, both enzymes were inhibited by lipocortin I in a manner very similar to the inhibition of pig pancreas phospholipase A2. By using phospholipases that lack a requirement for calcium, we have for the first time been able to dissociate enzymatic activity from the role of calcium in the inhibitory process. It was found that lipocortin was without effect against phospholipase A1 and phospholipase B in the absence of calcium, under which conditions the inhibitory protein is unable to interact with anionic phospholipid surfaces. The same behavior toward phospholipase A1 was observed with two other related proteins, endonexin II or lipocortin V, and p68/67-kDa calelectrin or lipocortin VI. Together with the observation that lipocortins are active only in the presence of limited amounts of substrate, these data give further support to the "surface depletion model" of lipocortin inhibition, rather than to a mechanism involving a direct interaction between enzyme and inhibitor.  相似文献   

4.
Calcium-dependent phospholipid binding and phospholipase A2 inhibitory proteins were isolated from human mononuclear cells. Lipocortins I and II were present whereas lipocortin IV (endonexin I) was not. The other proteins were purified to homogeneity and shown to have molecular masses of 35, 36, 32 and 73 kDa. The 36-kDa and 73-kDa proteins are related, the smaller appears to be part of the larger. The 73-kDa protein is related to the 67-kDa calelectrin and to lipocortin VI; the 32-kDa protein is different from endonexin I but related to chromobindin 7 and to lipocortin V. The 35-kDa protein has been identified by tryptic peptide sequencing as lipocortin III. All these proteins inhibit phospholipase A2 activity in vitro and the three smaller ones inhibit the [3H]arachidonic acid release from prelabelled monocytes induced by the calcium ionophore A23187 in a dose-dependent manner.  相似文献   

5.
Annexin I and annexin II were extracted from human placental membranes with ethylene glycol bis(beta-amino-ethyl ether)-N,N'-tetraacetic acid (EGTA) and purified by high-performance liquid chromatography by measuring their ability to inhibit phospholipase A2 activity in vitro. Neither protein was capable of binding to a DEAE-5PW HPLC column at neutral pH; however, they were resolved through binding to a Mono S column and passage through size-exclusion HPLC columns. Annexin I and its covalently linked dimer (36 and 66 kDa, respectively, by sodium dodecyl sulfate (SDS)-gel electrophoresis) reacted in one-dimensional immunoblots with monoclonal antibodies to annexin I and calpactin II, and with monoclonal and polyclonal antibodies to lipocortin I, confirming that annexin I, calpactin II, and lipocortin I are the same or closely related proteins. Milligram amounts of monomeric annexin I containing negligible amounts of the cross-linked dimeric annexin I were selectively isolated from placental membranes by using buffers containing the sulfhydryl reagent iodoacetic acid. Milligram amounts of cross-linked annexin I were selectively isolated when placental membranes were initially treated with buffers that did not contain iodoacetic acid and then extracted with Triton X-100, suggesting that sulfhydryl-dependent transglutaminase activity contributes to the selective isolation of this protein. A third phospholipase A2-inhibitory protein (35 kDa by SDS-gel electrophoresis) that reacted in immunoblots with monoclonal antibodies to calpactin I and annexin II, indicating their similar identity, was isolated. The procedure employed allows the rapid purification of annexins I and II in milligram amounts from placental membranes within 2 days.  相似文献   

6.
A 32 kDa phospholipase A2 inhibitory protein was isolated from pig thyroid gland after calcium precipitation and fast protein liquid anion-exchange chromatography. SDS-polyacrylamide gel electrophoresis revealed the purity of the protein. The protein activity was assessed by the inhibition of pancreatic phospholipase A2 on [3H]oleic acid-labelled Escherichia coli membranes as substrate and on the prostaglandin E2 production of cultured thyroid cells. The amino acid composition and the isoelectric point were quite similar to those of endonexin previously described in other tissues or cells. The cross-reactivity of a polyclonal antibody against a 32 kDa lipocortin from human peripheral blood mononuclear cells with our thyroidal 32 kDa protein confirmed its lipocortin nature. Before the purification by fast protein liquid chromatography, the Ca2+ pellet contained lipocortin I (35 kDa and its core protein 33 kDa) identified by its cross-reactivity with a polyclonal antibody.  相似文献   

7.
Evidence is obtained for the presence of lipocortin-like proteins in human tracheal gland cells in culture. Using polyclonal antibodies to lipocortin I, indirect immunofluorescence studies demonstrate that lipocortin I is mainly confined to the tracheal gland cell surface. From cell membranes, four Ca2(+)-dependent proteins (35, 40, 45 and 67 kDa) were identified as lipocortin related proteins by using immunoblotting and fluorography following [35S]methionine metabolic labeling experiments. A strong immunoreactivity for the 35 kDa protein was observed. In addition, lipocortin-like proteins with apparent Mr33, 35, 37 and 67 kDa, respectively, were released in the apical culture medium by tracheal gland cells cultured on microporous membrane of a double chamber culture system.  相似文献   

8.
Abstract: A portion of the neurofibrillary tangles of Alzheimer's disease has the characteristics of cross-linked protein. Because the principal component of these lesions is the microtubule-associated protein tau, and because a major source of cross-linking activity within neurons is supplied by tissue transglutaminase (TGase), it has been postulated that isopeptide bond formation is a major posttranslational modification leading to the formation of insoluble neurofibrillary tangles. Here we have mapped the sites on two isoforms of human tau protein (τ23 and τ40) capable of participating in human TGase-mediated isopeptide bond formation. Using dansyl-labeled fluorescent probes, it was shown that eight Gln residues can function as amine acceptor residues, with two major sites being Gln351 and Gln424. In addition, 10 Lys residues were identified as amine donors, most of which are clustered adjacent to the microtubule-binding repeats of tau in regions known to be solvent accessible in filamentous tau. The distribution of amine donors correlated closely with that of Arg residues, suggesting a link between neighboring positive charge and the TGase selectivity for donor sites in the protein substrate. Apart from revealing the sites that can be cross-linked during the TGase-catalyzed assembly of tau filaments, the results suggest a topography for the tau monomers so assembled.  相似文献   

9.
Transglutaminases (TGase; protein-glutamine: amine gamma-glutamyl-transferase) are a family of calcium-dependent acyl-transfer enzymes ubiquitously expressed in mammalian cells and responsible for catalyzing covalent cross-links between proteins or peptides. A series of recent crystal structures have revealed the overall architecture of TGase enzymes, and provided a deep look at their active site, calcium and magnesium ions, and the manner by which guanine nucleotides interact with this enzyme. These structures, backed with extensive biochemical studies, are providing new insights as to how access to the enzyme's active site may be gated through the coordinated changes in cellular calcium and magnesium concentrations and GTP/GDP. Calcium-activated TGase 3 can bind, hydrolyze, and is inhibited by GTP, despite lacking structural homology with other GTP binding proteins. A structure based sequence homology among the TGase enzyme family shows that these essential structural features are shared among other members of the TGase family.  相似文献   

10.
The 36 kDa substrate of several tyrosine protein kinases has been shown to exist in monomeric and oligomeric (362102) forms. Partial sequence data has suggested that the oligomer, referred to as protein I, is homologous to a group of phospholipase A2 inhibitory proteins, collectively called lipocortins. In the present communication we demonstrate that protein I inhibits bovine pancreas phospholipase A2 with similar potency to that of lipocortin. Approximately 44 pmol protein I was required to produce 50% inhibition of 7.2 pmol of phospholipase A2. Inhibition of phospholipase A2 activity by calmodulin, S-100, calregulin, parvalbumin, troponin-C, or CAB-48 was not observed. These results indicate that protein I is a potent and specific inhibitor of phospholipase A2 activity, and thus shares functional homology with the lipocortin proteins. We therefore propose that this protein be named lipocortin-85.  相似文献   

11.
The effects of transglutaminase (TGase) substrates putrescine, dansylcadaverine, spermine, etc., and the TGase inhibitor cystamine were tested on the motility of demembranated mammalian spermatozoa. These products blocked within a few seconds the motility of demembranated reactivated spermatozoa at concentrations ranging from 0.25 to 5 mM. These minimal inhibitory concentrations could be decreased 5–150-fold when TGase substrates and inhibitor were incubated with demembranated spermatozoa for 15 min prior to the addition of Mg·ATP. The inhibition was reversed by higher concentrations of Mg·ATP but none of these TGase substrates or inhibitor could inhibit bull sperm dynein ATPase. TGase activities, as measured by the incorporation of 3H-putrescine into TCA-precipitable proteins, were present in both sperm Triton-soluble and -insoluble fractions. On the other hand, amine acceptor protein substrates for the TGase-catalyzed reaction were present only in the insoluble fraction. The Triton-soluble TGase was similar to the known “tissue” TGases; the Triton-insoluble TGase activity was calcium independent. The same TGase substrates and inhibitor that blocked the motility of reactivated spermatozoa also blocked TGase activities. Linear relationships were observed between the concentrations of these substances required to block sperm motility and those to block TGase activities. These data suggest the involvement of a TGase activity in sperm motility.  相似文献   

12.
A transglutaminase (TGase) cDNA was cloned from carp ovary. It was highly homologous to zebrafish TGase. Immunoblot and enzymatical assay showed that TGase was present on the chorion and in the cytoplasm of carp eggs. Addition of TGase inhibitor, cadaverine or ethylene diaminetetracetic acid (EDTA) to the cortical reaction medium impaired the formation of the outer layer of fertilization envelope (FE(o)), the adhesive structure of carp egg. Fibroin-like substance (FLS), cystatin, cathepsin-like substance (CLS), and FEO-1 were the components of FE(o), wherein the majority of the former three were conjugated to form macromolecules of 90-205 kDa while the latter one was present in monomer of 22 kDa. Cadaverine interfered slightly the discharge of FLS conjugates out of the perivitelline space (PVS) but affected profoundly the recruitment of FLS conjugates to FE, whereas EDTA completely inhibited both the release and the recruitment of FLS conjugates to FE. Both EDTA and cadaverine did not inhibit the discharge of FEO-1 out of PVS but could inhibit the recruitment of FEO-1 to FE. The mechanism was studied. ZP2 and ZP3, the major constituents of inner layer of FE, were cross-linked during cortical reaction, which rendered FE hardened. In the presence of EDTA, the cross-linking of ZP2 and ZP3 were inhibited, thus FE remained soft. The PVS of an egg with a hardened FE was less expanded than an egg with a soft FE. It was assumed that a less expanded PVS would generate a higher fluid pressure than a more expanded PVS did. Therefore, the transportation of the macromolecules such as the FLS-cystatin-CLS conjugates out of PVS was facilitated in control and cadaverine-treated eggs whose FE were hardened but was blocked in EDTA-treated eggs whose FE were unhardened. On the other hand, the transportation of small molecules such as FEO-1 out of FE was not restrained, so they were discharged out of the PVS of the control and TGase inhibitor-treated eggs. In addition, TGase activity was also required for the recruitment of FLS conjugates to FE.  相似文献   

13.
Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.  相似文献   

14.
Transglutaminase 1 (TGase 1) is required for the formation of a cornified envelope in stratified squamous epithelia. Recombinant human TGase 1 expressed in baculovirus-infected cells was purified in a soluble form at the molecular mass of 92 kDa. Recombinant TGase 1 was susceptible to limited proteolysis by both μ- and m-calpains, the calcium-dependent intracellular cysteine proteases. Although the proteolysis did not induce the elevation of the specific enzyme activity of TGase 1, the requirement of calcium ion in the enzymatic reaction was reduced. Furthermore, the effects of GTP, nitric oxide, and sphingosylphosphocholine, known as regulatory factors for tissue-type isozyme (TGase 2), on the enzymatic activity of TGase 1 were investigated.  相似文献   

15.
We have identified two major proteins in human neutrophils that are phosphorylated in vitro by protein kinase C (PKC) as lipocortins III and a fragment of a lipocortin-like 68-kDa protein. In electroporated cells, the 68-kDa protein was phosphorylated during stimulation of the cells with either FMLP or PMA. Lipocortins are of interest because of their Ca2(+)- and phospholipid-dependent actin binding properties and ability to inhibit phospholipase A2. Two crude fractions of enzymes and proteins exposed to [gamma-32]PATP in the presence of Ca2+, Mg2+, phosphatidylserine and 1,2-oleoyl-acetyl-rac-glycerol were analyzed by gel electrophoresis and autoradiography. A number of proteins in a detergent-free fraction, including proteins at 36 and 32 kDa, were phosphorylated in the presence of these cofactors. In contrast, only two major proteins (35 and 32 kDa) were phosphorylated in a detergent-extracted fraction. Phosphorylation of the 36, 35, and 32 kDa proteins required the presence of Ca2+, Mg2+, and phosphatidylserine in our soluble fraction and detergent extract, indicating PKC-dependent phosphorylation. The 32-kDa protein phosphorylated in both the soluble fraction and detergent extract was identified as lipocortin III by immunoprecipitation with a cross-reactive antibody that recognized lipocortin I and comparison of cyanogen bromide (CNBr) cleavage patterns of this protein with a lipocortin III standard. The 68-kDa protein was identified as a lipocortin VI-like protein by immunoprecipitation with anti-calelectrin. Additionally, the CNBr cleavage pattern of the 68-kDa protein was similar to that of the 36-kDa protein phosphorylated in our soluble fraction. Autoradiograms of the 68- and 36-kDa fragments immunoprecipitated from our soluble fraction with anticalelectrin and cleaved with CNBr showed that both of these proteins were phosphorylated in this sample. Because phosphorylation is known to change the functional characteristics of the lipocortins, the potential exists to link PKC and lipocortins in neutrophils to regulation of granulemembrane interactions or mediation of inflammation.  相似文献   

16.
Transglutaminase 1 (TGase 1) is required for the formation of a cornified envelope in stratified squamous epithelia. Recombinant human TGase 1 expressed in baculovirus-infected cells was purified in a soluble form at the molecular mass of 92 kDa. Recombinant TGase 1 was susceptible to limited proteolysis by both mu- and m-calpains, the calcium-dependent intracellular cysteine proteases. Although the proteolysis did not induce the elevation of the specific enzyme activity of TGase 1, the requirement of calcium ion in the enzymatic reaction was reduced. Furthermore, the effects of GTP, nitric oxide, and sphingosylphosphocholine, known as regulatory factors for tissue-type isozyme (TGase 2), on the enzymatic activity of TGase 1 were investigated.  相似文献   

17.
Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.  相似文献   

18.
Purification of three forms of lipocortin from bovine lung   总被引:2,自引:0,他引:2  
Experimental conditions are described for simultaneous purification of three forms of lipocortin (lipocortin I, lipocortin II and lipocortin-85) from bovine lung. The procedure yields milligram quantities of all three lipocortins. Using antisera against lipocortin I and lipocortin II, purified proteins show no cross contaminations. All forms of lipocortin exhibit equal potency as in vitro bovine pancreatic phospholipase A2 inhibitors. Protein kinase C catalyzes the in vivo incorporation of about 1.0, 0.7 and 0.4 mole of phosphate per mole of lipocortin I (p35), lipocortin II (p36) and lipocortin-85 (p36 oligomer) respectively. The phosphorylation is specific for protein kinase C and is dependent on the presence of both calcium and phospholipids. While lipocortin I is phosphorylated on threonine residues, lipocortin II and lipocortin-85 are phosphorylated on serine residues.  相似文献   

19.
20.
K Machoczek  M Fischer  H D S?ling 《FEBS letters》1989,251(1-2):207-212
Lipocortins I and II, known to inhibit phospholipase A2, have been purified from bovine lung and tested with respect to their ability to affect the enzymatic activities of phosphoinositide- and polyphosphoinositide-specific phospholipase C from human platelets, rat liver cytosol or rat brain membranes. At 0.67 microM, both lipocortins led to complete inhibition of phospholipase C activity with either phosphatidylinositol or phosphatidylinositol 4,5-bisphosphate as substrate. The inhibition could be overcome by increasing the substrate concentration. Ultracentrifugation studies with lipocortin II showed a direct interaction between phosphatidylinositol and the lipocortin, indicating that the lipocortins inhibit phospholipase C not directly but by interacting with the substrate. In experiments with plasma membranes from [3H]inositol-labeled HL-60 cells, lipocortin II did not affect PI-specific phospholipase C activity in the absence or presence of calcium plus or minus GTP-gamma-S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号