首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiao Y  Lu L  Williams RW  Smeyne RJ 《PloS one》2012,7(1):e29447
The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ~50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different.  相似文献   

2.
We isolated mouse cDNA encoding a novel FGF (251 amino acids). As this is the 23rd documented FGF, we termed it FGF-23. FGF-23 has a hydrophobic amino terminus ( approximately 24 amino acids), which is a typical signal sequence. As expected, recombinant mouse FGF-23 was efficiently secreted by High Five insect cell-infected recombinant baculovirus containing the cDNA, indicating that FGF-23 is a secreted protein. We also isolated human cDNA encoding FGF-23 (251 amino acids), which is highly identical ( approximately 72% amino acid identity) to mouse FGF-23. Of human FGF family members, FGF-23 is most similar to FGF-21 and FGF-19 ( approximately 24% and approximately 22% amino acid identities, respectively). Human FGF-23 gene was localized on the chromosome 12p13 and found to be tandem linked (within 5.5 kb) to human FGF-6 gene. The expression of FGF-23 mRNA in mouse adult tissues was examined by real-time quantitative polymerase chain reaction. FGF-23 mRNA was mainly expressed in the brain and thymus at low levels. The localization of FGF-23 mRNA in the brain was examined by in situ hybridization. FGF-23 mRNA in the brain was found to be preferentially expressed in the ventrolateral thalamic nucleus. Therefore, FGF-23 is expected a unique FGF that plays roles in the function of the ventrolateral thalamic nucleus.  相似文献   

3.
4.
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.  相似文献   

5.
1. In this article we review the studies of memory disabilities in a rat model o Parkinson's disease (PD).2. Intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to rats causes a partial lesion in the substantia nigra, compact part (SNc) and a specific loss of dopamine and its metabolites in the striatum of rats.3. These animals present learning and memory deficits but no sensorimotor impairments, thus modeling the early phase of PD when cognitive impairments are observed but the motor symptoms of the disease are barely present.4. The cognitive deficits observed in these animals affect memory tasks proposed to model habit learning (the cued version of the water maze task and the two-way active avoidance task) and working memory (a working memory version of the water maze), but spare long-term spatial memory (the spatial reference version of the Morris water maze).5. The treatment of these animals with levodopa in a dose that restores the striatal level of dopamine does not reverse these memory impairments, probably because this treatment promotes a high level of dopamine in extrastriatal brain regions, such as the prefrontal cortex and the hippocampus.6. On the other hand, the adenosine receptor antagonist, caffeine, partly reverse the memory impairment effect of SNc lesion in these rats. This effect may be due to caffeine action on nigrostriatal neurons, since it induces dopamine release and modulates the interaction between adenosine and dopamine receptor activity.7. These results suggest that the MPTP SNc-lesioned rats are a good model to study memory disabilities related to PD and that caffeine and other selective A(2A) adenosine receptor antagonists are promising drugs to treat this symptoms in PD patients.  相似文献   

6.
Identification of a novel FGF, FGF-21, preferentially expressed in the liver   总被引:18,自引:0,他引:18  
We isolated cDNA encoding a novel FGF (210 amino acids) from mouse embryos. As this is the 21st documented FGF, we tentatively term it FGF-21. FGF-21 has a hydrophobic amino terminus ( approximately 30 amino acids), which is a typical signal sequence, and appears to be a secreted protein. The expression of FGF-21 mRNA in mouse adult tissues was examined by Northern blotting analysis. FGF-21 mRNA was most abundantly expressed in the liver, and also expressed in the thymus at lower levels. We also isolated human cDNA encoding FGF-21 (209 amino acids). Human FGF-21 is highly identical ( approximately 75% amino acid identity) to mouse FGF-21. Among human FGF family members, FGF-21 is most similar ( approximately 35% amino acid identity) to FGF-19.  相似文献   

7.
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.  相似文献   

8.
Striatal delivery of dopamine (DA) by midbrain substantia nigra pars compacta (SNc) neurons is vital for motor control and its depletion causes the motor symptoms of Parkinson's disease. While membrane potential changes or neuronal activity regulates tyrosine hydroxylase (TH, the rate limiting enzyme in catecholamine synthesis) expression in other catecholaminergic cells, it is not known whether the same occurs in adult SNc neurons. We administered drugs known to alter neuronal activity to mouse SNc DAergic neurons in various experimental preparations and measured changes in their TH expression. In cultured midbrain neurons, blockade of action potentials with 1?μM tetrodotoxin decreased TH expression beginning around 20?h later (as measured in real time by green fluorescent protein (GFP) expression driven off TH promoter activity). By contrast, partial blockade of small-conductance, Ca(2+) -activated potassium channels with 300?nM apamin increased TH mRNA and protein between 12 and 24?h later in slices of adult midbrain. Two-week infusions of 300?nM apamin directly to the adult mouse midbrain in vivo also increased TH expression in SNc neurons, measured immunohistochemically. Paradoxically, the number of TH immunoreactive (TH+) SNc neurons decreased in these animals. Similar in vivo infusions of drugs affecting other ion-channels and receptors (L-type voltage-activated Ca(2+) channels, GABA(A) receptors, high K(+) , DA receptors) also increased or decreased cellular TH immunoreactivity but decreased or increased, respectively, the number of TH+ cells in SNc. We conclude that in adult SNc neurons: (i) TH expression is activity-dependent and begins to change ~20?h following sustained changes in neuronal activity; (ii) ion-channels and receptors mediating cell-autonomous activity or synaptic input are equally potent in altering TH expression; and (iii) activity-dependent changes in TH expression are balanced by opposing changes in the number of TH+ SNc cells.  相似文献   

9.
Human alpha-synuclein was identified on the basis of proteolytic fragments derived from senile plaques of Alzheimer's disease, and it is the locus of mutations in some familial forms of Parkinson's disease. Its normal function and whether it may play a direct role in neural degeneration remain unknown. To explore cellular responses to neural degeneration in the dopamine neurons of the substantia nigra, we have developed a rodent model of apoptotic death induced by developmental injury to their target, the striatum. We find by mRNA differential display that synuclein is up-regulated in this model, and thus it provides an opportunity to examine directly whether synuclein plays a role in the death of these neurons or, alternatively, in compensatory responses. Up-regulation of mRNA is associated with an increase in the number of neuronal profiles immunostained for synuclein protein. At a cellular level, synuclein is almost exclusively expressed in normal neurons, rather than apoptotic profiles. Synuclein is up-regulated throughout normal postnatal development of substantia nigra neurons, but it is not further up-regulated during periods of natural cell death. We conclude that up-regulation of synuclein in the target injury model is unlikely to mediate apoptotic death and propose that it may be due to a compensatory response in neurons destined to survive.  相似文献   

10.
We isolated cDNA encoding a novel fibroblast growth factor (FGF-22) (170 amino acids) from human placenta. Of the FGF family members, FGF-22, which appears to be a secreted protein, is most similar to FGF-10 and FGF-7 (approximately 46% and approximately 40% amino acid identities, respectively). The human FGF-22 gene was localized on chromosome 19p13.3. We also isolated mouse cDNA encoding FGF-22 (162 amino acids) from the skin. Mouse FGF-22 shows high homology (87% amino acid identity) to human FGF-22. Mouse FGF-22 mRNA was found to be preferentially expressed in the skin among the mouse adult tissues examined by Northern blotting analysis. By in situ hybridization, FGF-22 mRNA in the skin was found to be preferentially expressed in the inner root sheath of the hair follicle. Therefore, FGF-22 is expected to be a unique FGF that plays a role in hair development.  相似文献   

11.
Dopamine (DA) neurons release DA not only from axon terminals at the striatum, but from their somata and dendrites at the substantia nigra pars compacta (SNc). Released DA may auto-regulate further DA release or modulate non-DA cells. However, the actual mechanism of somatodendritic DA release, especially the Ca2+ dependency of the process, remains controversial. In this study, we used amperometry to monitor DA release from somata of acutely isolated rat DA neurons. We found that DA neurons spontaneously released DA in the resting state. Removal of extracellular Ca2+ and application of blockers for voltage-operated Ca2+ channels (VOCCs) suppressed the frequency of secretion events. Activation of VOCCs by stimulation with K+-rich saline increased the frequency of secretion events, which were also sensitive to blockers for L- and T-type Ca2+ channels. These results suggest that Ca2+ influx through VOCCs regulates DA release from somata of DA neurons.  相似文献   

12.
Nuclear Magnetic Relaxation field-cycling relaxometry is a technique, able to report on water mobility in tissues. By means of this technique, post-mortem specimens from both controls and idiopathic Parkinson's disease patients have been investigated. Results show different relaxometric behavior between the groups, which is consistent with protein aggregation in Parkinson's disease specimens.  相似文献   

13.
The dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area play a crucial role in regulating movement and cognition respectively. Several lines of evidence suggest that a degeneration of dopaminergic cells in the substantia nigra produces the symptoms of Parkinson's disease. On the other hand, a hyperactivity of the dopaminergic transmission in the brain induces dyskinesia, dystonia and psychosis. It is also well established that the euphoric and rewarding responses evoked by drugs of addiction, such as amphetamine and cocaine, are mediated by central dopamine systems. Electrophysiological experiments which study the activity of single dopaminergic neurons in the ventral mesencephalon have shown that dopamine and dopaminergic drugs reduce the firing frequency of these cells. This is due to the stimulation of D2-D3 autoreceptors and to a hyperpolarization of the membrane produced by an increase in potassium conductance. In addition, substances which increase the release (amphetamine), the synthesis (levodopa) or block the uptake (cocaine, nomifensine, amineptine) of dopamine in the brain inhibit the firing activity of the dopaminergic cells throughout dopamine-mediated mechanisms. In this review, we will briefly examine the literature concerning the physiological and behavioural responses caused by dopamine and dopaminergic agents on the dopaminergic neurons of the ventral mesencephalon. Our conclusion suggests that the electrophysiological actions of dopamine and dopamine-related drugs on dopaminergic cells in the ventral mesencephalon might be indicative of the pharmacological effects of these agents on the brain.  相似文献   

14.
Synapses in the rat substantia nigra   总被引:1,自引:0,他引:1  
The composition and organization of the input to the rat substantia nigra were studied with the electron microscope. Four distinct types of synaptic boutons were described. The first contained small (381 A), clear synaptic vesicles. The second type contained the small, clear vesicles and several large, dense-core vesicles. The third ending contained large, dense-core vesicles and larger (581 A) clear vesicles. The fourth ending, found on the axon hillock and other terminal boutons, contained slightly elongated, clear synaptic vesicles. The presence of these four boutons was discussed in light of the known afferent input and neurochemical composition of the substantia nigra.  相似文献   

15.
Evidence suggests that increased glutamatergic input to the substantia nigra pars compacta as a result of hyperactivity of subthalalmic nucleus output pathways may contribute to the progressive degeneration of nigral dopaminergic neurones in Parkinson's disease (PD), a debilitating neurodegenerative disorder which affects approximately 1% of people aged over 65. Substantial electrophysiological evidence suggests that the excitation of nigral dopaminergic neurones is regulated by the activation of Group I metabotropic glutamate receptors (mGluR), comprising mGluR1 and mGluR5 subtypes. As activation of these receptors by endogenous glutamate may promote multiple cascades leading to excitotoxic neuronal death, it may be hypothesised that functional antagonism of Group I mGluR should be neuroprotective and could form the basis of a novel neuroprotective treatment for PD. To investigate this hypothesis, the neuroprotective potential of the selective competitive mGlu1 antagonist (+)-2-methyl-4-carboxyphenylglycine ((S)-(+)-alpha-amino-4-carboxy-2-methlybenzeneacetic acid; LY367385) and the selective allosteric mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was tested in a rodent 6-hydroxydopamine (6-OHDA) model of PD in vivo. Both acute and subchronic intranigral administration of either LY367385 or MPEP resulted in significant neuroprotection of nigral tyrosine hydroxylase immunoreactive cell bodies, which correlated closely with prevention of striatal monoamine depletion following 6-OHDA lesioning. This neuroprotective action of LY367385 and MPEP displayed a clear concentration-dependent effect, suggesting a receptor-mediated mechanism of action. LY367385 produced robust neuroprotection at all concentrations tested (40, 200 and 1000 nmol in 4 microL), whilst MPEP displayed a bell-shaped neuroprotective profile with significant neuroprotection at low concentrations (2 and 10 nmol in 4 microL) but not at higher concentrations (50 nmol). Importantly, subchronic intranigral administration of MPEP and LY367385 appeared to slow the degeneration of remaining nigral dopaminergic neurones and prevented further striatal dopamine depletion in animals with established 6-OHDA induced nigrostriatal lesions, suggesting that these compounds may significantly influence disease progression in this model.  相似文献   

16.
Cytoarchitecture of the substantia nigra in the rat   总被引:1,自引:0,他引:1  
  相似文献   

17.
Intravenous administration of two benzodiazepines, flurazepam and diazepam, had an inhibitory effect on the firing rates of neurons of the substantia nigra pars reticulata, a brain region with an identified GABAergic innervation. Diazepam was more potent than flurazepam. Bicuculline and picrotoxin, two drugs which block GABAergic transmission, and caffeine and theophylline, two methylxanthines which inhibit benzodiazepine binding, all reversed the inhibition produced by diazepam. The action of theophylline was less consistent than that of caffeine. Similarly, Ro 15–1788, an imidazodiazepine which putatively functions as a specific benzodiazepine antagonist, reversed the diazepam-induced inhibition. These findings are consistent with previous reports which suggest that the benzodiazepines may act through a GABAergic mechanism. In a separate group of experiments, caffeine or Ro 15–1788 was administered alone. While caffeine excited all reticulata cells tested. Ro 15–1788, the more specific benzodiazepine antagonist, generally had little excitatory effect. These results suggest: 1) that cells of the substantia nigra pars reticulata may not receive a substantial, tonic inhibition mediated by an endogenous benzodiazepine-like substance; and 2) that the methylxanthines may increase reticulata cell firing, at least in part, through mechanisms unrelated to the blockade of benzodiazepine receptors.  相似文献   

18.
The growing body of evidence suggests that intermediate products of alpha-synuclein aggregation cause death of sensitive populations of neurones, particularly dopaminergic neurones, which is a critical event in the development of Parkinson's disease and other synucleinopathies. The role of two other members of the family, beta-synuclein and gamma-synuclein, in neurodegeneration is less understood. We studied the effect of inactivation of gamma-synuclein gene on mouse midbrain dopaminergic neurones. Reduced number of dopaminergic neurones was found in substantia nigra pars compacta (SNpc) but not in ventral tegmental area (VTA) of early post-natal and adult gamma-synuclein null mutant mice. Similar reductions were revealed in alpha-synuclein and double alpha-synuclein/gamma-synuclein null mutant animals. However, in none of these mutants did this lead to significant changes of striatal dopamine or dopamine metabolite levels and motor dysfunction. In all three studied types of null mutants, dopaminergic neurones of SNpc were resistant to methyl-phenyl-tetrahydropyridine (MPTP) toxicity. We propose that both synucleins are important for effective survival of SNpc neurones during critical period of development but, in the absence of these proteins, permanent activation of compensatory mechanisms allow many neurones to survive and become resistant to certain toxic insults.  相似文献   

19.
We have cloned and characterized a novel gene from both human and mouse that encodes a new member of the immunoglobulin superfamily. The gene is preferentially expressed in both brain and testis, and hence, termed BT-IgSF (brain- and testis-specific immunoglobulin superfamily). The predicted protein consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Human BT-IgSF protein (431 amino acids) is 88% identical to the mouse protein (428 amino acids) and both show significant homology to coxsackie and adenovirus receptor (CAR) and endothelial cell-selective adhesion molecule (ESAM). We examined the expression of BT-IgSF with various cultured cells and found that the gene was expressed in both neurons and glial cells in vitro. Furthermore, the expression was preferentially detected in pyramidal cell layers of the dentate gyrus and hippocampus and in commissure fibers of the corpus callosum, in brain tissue sections examined. These findings suggest that BT-IgSF plays a role in the development or function of the central nervous system.  相似文献   

20.
Accumulation of transition metals has been suggested to be responsible for the deteriorated nigrostriatal dopaminergic system in Parkinson's patients. In the present study, the mechanism underlying the zinc-induced neurotoxicity was investigated in the nigrostriatal dopaminergic system in vivo. Our 6-methoxy-8-paratoluene sulfonamide quinoline fluorescence study showed zinc translocation in the infused nigral cells after intranigral infusion of zinc. Furthermore, lipid peroxidation in the zinc-infused substantia nigra was consistently elevated 4 h to 7 d after the infusion. At the same time, an abrupt increase in cytosolic cytochrome c content in the infused substantia nigra was observed 4 h after zinc infusion and gradually decreased to basal levels 7 d after infusion. Both TUNEL-positive neurons and DNA fragmentation, indicatives of apoptosis, were detected in the zinc-infused substantia nigra. Furthermore, striatal dopamine content was reduced 7 d after the infusion. In attempt to prevent zinc-induced neurotoxicity, vitamin D3 was systemically administered. Zinc-induced increases in lipid peroxidation and cytosolic cytochrome c in the infused substantia nigra were prevented by this treatment. Moreover, zinc-induced reduction in striatal dopamine content was attenuated after vitamin D3 treatment. Our in vivo data suggest that zinc-induced oxidative stress may result in apoptosis followed by reduced dopaminergic function in the nigrostriatal dopaminergic system. Furthermore, vitamin D3 prevented zinc-induced oxidative injuries in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号