首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADP-ribosylation of cell surface proteins in mammalian cells is a post-translational modification by which ecto-ADP-ribosyltransferases (ARTs) transfer ADP-ribose from extracellular NAD to protein targets. The ART2 locus at murine chromosome 7 encompasses the tandem Art2a and Art2b genes that encode the distinct ART2.1 and ART2.2 proteins. Although both ecto-enzymes share 80% sequence identity, ART2.1 activity is uniquely regulated by an allosteric disulfide bond that is reducible in the presence of extracellular thiols, such as cysteine and glutathione, that accumulate in hypoxic and ischemic tissues. Previous studies have characterized the expression of ART2.1 and ART2.2 in murine T lymphocytes but not in other major classes of lymphoid and myeloid leukocytes. Here, we describe the expression of ART2.1 activity in a wide range of freshly isolated or tissue-cultured murine myeloid and lymphoid leukocytes. Spleen-derived macrophages, dendritic cells (DC), and B cells constitutively express ART2.1 as their predominant ART while spleen T cells express both ART2.1 and the thiol-independent ART2.2 isoform. Although bone-marrow-derived macrophages (BMDM) and dendritic cells (BMDC) constitutively express ART2.1 at low levels, it is markedly up-regulated when these cells are stimulated in vitro with IFNβ or IFNγ. ART2.1 expression and activity in splenic B cells is modestly up-regulated during incubation in vitro for 24 h, a condition that promotes B cell apoptosis. This increase in ART2.1 is attenuated by IL-4 (a B cell survival factor), but is not affected by IFNβ/γ, suggesting a possible induction of ART2.1 as an ancillary response to B cell apoptosis. In contrast, ART2.1 and ART2.2, which are highly expressed in freshly isolated splenic T cells, are markedly down-regulated when purified T cells are incubated in vitro for 12–24 h. Studies with the BW5147 mouse thymocyte line verified basal expression of ART2.1 and ART2.2, as in primary spleen T cells, and demonstrated that both isoforms can be up-regulated when T cells are maintained in the presence of IFNs. Comparison of the surface proteins which are ADP-ribosylated by ART2.1 in the different leukocyte subtypes indicated both shared and cell-specific proteins as ART2.1 substrates. The LFA-1 integrin, a major target for ART2.2 in T cells, is also ADP-ribosylated by the ART2.1 expressed in macrophages. Thus, ART2.1, in contrast to ART2.2, is expressed in a broad range of myeloid and lymphoid leukocytes. The thiol redox-sensitive nature of this ecto-enzyme suggests an involvement in purinergic signaling that occurs in the combined context of inflammation and hypoxia/ischemia.  相似文献   

2.
Lymphocytes express a number of NAD-metabolizing ectoenzymes, including mono(ADP-ribosyl)transferases (ART) and ADP ribosylcyclases. These enzymes may regulate lymphocyte functions following the release of NAD in injured or inflammatory tissues We report here that extracellular NAD induces apoptosis in BALB/c splenic T cells with an IC(50) of 3-5 microM. Annexin V staining of cells was observed already 10 min after treatment with NAD in the absence of any additional signal. Removal of GPI-anchored cell surface proteins by phosphatidylinositol-specific phospholipase C treatment rendered cells resistant to NAD-mediated apoptosis. RT-PCR analyses revealed that resting BALB/c T cells expressed the genes for GPI-anchored ART2.1 and ART2.2 but not ART1. ART2-specific antisera blocked radiolabeling of cell surface proteins with both [(32)P]NAD and NAD-mediated apoptosis. Further analyses revealed that natural knockout mice for Art2.a (C57BL/6) or Art2.b (NZW) were resistant to NAD-mediated apoptosis. Labeling with [(32)P]NAD revealed strong cell surface ART activity on T cells of C57BL/6 and little if any activity on cells of NZW mice. T cells of (C57BL/6 x NZW)F(1) animals showed strong cell surface ART activity and were very sensitive to NAD-induced apoptosis. As in BALB/c T cells, ART2-specific antisera blocked cell surface ART activity and apoptosis in (C57BL/6 x NZW)F(1) T cells. The fact that T cells of F(1) animals are sensitive to rapid NAD-induced apoptosis suggests that this effect requires the complementation of (at least) two genetic components. We propose that one of these is cell surface ART2.2 activity (defective in the NZW parent), the other a downstream effector of ADP-ribosylation (defective in the C57BL/6 parent).  相似文献   

3.
This is the first study reporting the inactivation of a member of the mouse gene family of toxin-related ecto-ADP-ribosyltransferases (ARTs). Transfer of the ADP-ribose moiety from NAD onto extracellular arginine residues on T-cell membrane proteins is mediated by glycosylphosphatidylinositol-linked cell surface ARTs. Exposure of T cells to ecto-NAD blocks T-cell activation and induces T-cell apoptosis. To determine a possible role of ecto-ART2.1 and ART2.2 in these processes, we generated ART2.1/ART2.2 double-knockout mice. ART2-deficient mice were healthy and fertile and showed normal development of lymphoid organs. ART2-deficient T cells showed a dramatically reduced capacity to ADP-ribosylate cell surface proteins, indicating that most if not all ART activity on the T-cell surface can be attributed to the ART2s. Moreover, ART2-deficient T cells were completely resistant to NAD-induced apoptosis and partially resistant to NAD-mediated suppression of proliferation. These results demonstrate that the ART2 ectoenzymes are an essential component in the regulation of T-cell functions by extracellular NAD, e.g., following release of NAD upon lysis of cells in tissue injury and inflammation.  相似文献   

4.
Although anti-inflammatory effects of astaxanthin (ASTX) have been suggested, the underlying mechanisms have not been fully understood. Particularly, the modulatory action of ASTX in the interplay between nuclear factor E2-related factor 2 (NRF2) and nuclear factor κB (NFκB) to exert its anti-inflammatory effect in macrophages is unknown. The effect of ASTX on mRNA and protein expression of pro-inflammatory and antioxidant genes and/or cellular reactive oxygen species (ROS) accumulation were determined in RAW 264.7 macrophages, bone marrow-derived macrophages (BMDM) from wild-type (WT) and Nrf2-deficient mice, and/or splenocytes and peritoneal macrophages of obese mice fed ASTX. The effect of ASTX on M1 and M2 macrophage polarization was evaluated in BMDM. ASTX significantly decreased LPS-induced mRNA expression of interleukin 6 (Il-6) and Il-1β by inhibiting nuclear translocation of NFκB p65; and attenuated LPS-induced ROS with an increase in NRF2 nuclear translocation, concomitantly decreasing NADPH oxidase 2 expression in RAW 264.7 macrophages. In BMDM of WT and Nrf2-deficient mice, ASTX decreased basal and LPS-induced ROS accumulation. The induction of Il-6 mRNA by LPS was repressed by ASTX in both types of BMDM while Il-1β mRNA was decreased only in WT BMDM. Furthermore, ASTX consumption lowered LPS sensitivity of splenocytes in obese mice. ASTX decreased M1 polarization of BMDM while increasing M2 polarization. ASTX exerts its anti-inflammatory effect by inhibiting nuclear translocation of NFκB p65 and by preventing ROS accumulation in NRF2-dependent and -independent mechanisms. Thus, ASTX is an agent with anti-inflammatory and antioxidant properties that may be used for the prevention of inflammatory conditions.  相似文献   

5.
The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.  相似文献   

6.
Kaushik RS  Uzonna JE  Zhang Y  Gordon JR  Tabel H 《Cytokine》2000,12(7):1024-1034
Resistance to African trypanosomiasis is under multigenic control. BALB/c mice are highly susceptible while C57Bl/6 mice are relatively resistant. Macrophages eliminate opsonized trypanosomes from the bloodstream and are involved in immunosuppression. We therefore investigated the production of a number of cytokines (IL-10, IL-6, TNF-alpha and IL-12) by bone marrow-derived macrophages (BMDM) from C57Bl/6 and BALB/c mice following challenge with either Trypanosoma congolense or Trypanosoma brucei. BMDM from C57Bl/6 mice, upon challenge with whole cell extracts (WCE) of T. congolense or T. brucei, produced significantly more TNF-alpha and IL-12 than those from BALB/c mice. The production of these cytokines was significantly enhanced by pretreatment of the cells with IFN-gamma. BMDM from BALB/c mice, however, produced significantly more IL-6 and IL-10 than those from C57Bl/6 mice. In contrast to LPS stimulation, simultaneous treatment of cells with WCE and IFN-gamma enhanced IL-10 synthesis by BMDM from BALB/c mice. These results indicate that cytokine genes are differentially regulated in macrophages from trypanosome-susceptible and -resistant mice and are consistent with our previous findings wherein retrovirus-immortalized macrophage cell lines from BALB/c and C57Bl/6 mice produce differential amounts of cytokines after phagocytosis of trypanosomes.  相似文献   

7.
8.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   

9.
10.
11.
Mono ADP-ribosyltransferase 2 (ART2) is an ectoenzyme expressed on mouse T lymphocytes, which catalyze the transfer of ADP-ribose groups from NAD(+) onto several target proteins. In vitro, ADP-ribosylation by ART2 activates the P2X7 ATP receptor and is responsible for NAD(+)-induced T cell death (NICD). Yet, the origin of extracellular NAD(+) and the role of NICD in vivo remain elusive. In a model of acute inflammation induced by polyacrylamide beads, we demonstrate release of NAD(+) into exudates during the early phase of the inflammatory response. This leads to T cell depletion in the draining lymph nodes from wild-type and, more severely, from mice lacking the CD38 NAD(+) glycohydrolase, whereas no effect is observed in ART2-deficient animals. Intravenous injection of NAD(+) used to exacerbate NICD in vivo results in fast and dramatic ART2- and P2X7-dependent depletion of CD4+ and CD8+ T lymphocytes, which can affect up to 80% of peripheral T cells in CD38(-/-) mice. This affects mainly naive T cells as most cells surviving in vivo NAD+ treatment exhibit the phenotype of recently activated/memory cells. Consistently, treatment with NAD(+) abolishes primary Ab response to a T-dependent Ag in NICD-susceptible CD38(-/-) mice but has no effect on the secondary response when given several days after priming. Unexpectedly NAD+ treatment improves the response in their wild-type BALB/c counterparts. We propose that NAD(+) released during early inflammation facilitates the expansion of primed T cells, through ART2-driven death of resting cells, thus contributing to the dynamic regulation of T cell homeostasis.  相似文献   

12.
NAD functions in multiple aspects of cellular metabolism and signaling through enzymes that covalently transfer ADP-ribose from NAD to acceptor proteins, thereby altering their function. NAD is a substrate for two enzyme families, mono-ADP-ribosyltransferases (mARTs) and poly(ADP-ribose) polymerases (PARPs), that covalently transfer an ADP-ribose monomer or polymer, respectively, to acceptor proteins. ART2, a mART, is a phenotypic marker of immunoregulatory cells found on the surface of T lymphocytes, including intestinal intraepithelial lymphocytes (IELs). We have shown that the auto-ADP-ribosylation of the ART2.2 allelic protein is multimeric. Our backbone structural alignment of ART2 (two alleles of the rat art2 gene have been reported, for simplicity, the ART2.2 protein investigated in this study will be referred to as ART2) and PARP suggested that multimeric auto-ADP-ribosylation of ART2 may represent an ADP-ribose polymer, rather than multiple sites of mono-ADP-ribosylation. To investigate this, we used highly purified recombinant ART2 and demonstrated that ART2 catalyzes the formation of an ADP-ribose polymer by sequencing gel and by HPLC and MS/MS mass spectrometry identification of PR-AMP, a breakdown product specific to poly(ADP-ribose). Furthermore, we identified the site of ADP-ribose polymer attachment on ART2 as Arg-185, an arginine in a crucial loop of its catalytic core. We found that endogenous ART2 on IELs undergoes multimeric auto-ADP-ribosylation more efficiently than ART2 on peripheral T cells, suggesting that these distinct lymphocyte populations differ in their ART2 surface topology. Furthermore, ART2.2 IELs are more resistant to NAD-induced cell death than ART2.1 IELs that do not have multimeric auto-ADP-ribosylation activity. The data suggest that capability of polymerizing ADP-ribose may not be unique to PARPs and that poly(ADP-ribosylation), an established nuclear activity, may occur extracellularly and modulate cell function.  相似文献   

13.
BALB/c and C57B1/6 mice differ in resistance to Trypanosoma congolense infections. Evidence suggests that macrophages play a central role in the resistance to trypanosomiasis. Nitric oxide (NO) produced by macrophages in response to various stimuli or pathogens is one of the important arms of nonspecific immunity. We investigated the production of NO by the peritoneal macrophages and bone marrow-derived macrophages (BMDM) from trypanosome-resistant C57B1/6 and -susceptible BALB/c mice following stimulation with T. congolense whole cell extract (WCE) or following phagocytosis of T. congolense mediated by anti-variant surface glycoprotein (VSG) antibodies of IgM or IgG2a isotype. C57B1/6 peritoneal macrophages as well as BMDM produced significantly more NO than similar BALB/c macrophages in response to T. congolense lysate and IFN-gamma. In both BALB/c and C57B1/6 BMDM cultures, phagocytosis of T. congolense mediated by anti-VSG antibodies of IgG2a isotype in the presence of IFNgamma induced two- to ninefold more NO than phagocytosis mediated by IgM antibodies and C57B1/6 BMDM produced significantly higher amounts of NO than BALB/c BMDM under these conditions. NO produced by BMDM was found to exert trypanostatic effect on T. congolense in vitro, but was not found to influence the in vivo infectivity of these treated parasites under the conditions used in this study.  相似文献   

14.
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
Certain activating immune receptors expressed on myeloid cells noncovalently associate with either DAP12 or FcepsilonRIgamma (FcRgamma chain), the ITAM-bearing transmembrane adapter proteins. An activating receptor, myeloid-associated Ig-like receptor (MAIR) II, is expressed on a subset of B cells and macrophages in the spleen and peritoneal cavity of mice and associates with DAP12 in these cells. However, we demonstrate here that cross-linking MAIR-II with mAb induced secretion of a significant amount of the inflammatory cytokines TNF-alpha and IL-6 from DAP12(-/-) as well as wild-type (WT) peritoneal macrophages. We show that MAIR-II associates with not only DAP12 but also FcRgamma chain homodimers in peritoneal macrophages. LPS enhanced the FcRgamma chain expression and FcRgamma chain-dependent cell surface expression of MAIR-II and had additive effects on MAIR-II-mediated inflammatory cytokine secretion from peritoneal macrophages. The lysine residue in the transmembrane region of MAIR-II was involved in the association with FcRgamma chain as well as DAP12. Our findings present the first case of an activating receptor that uses either DAP12 or FcRgamma chain as a signaling adapter. The FcRgamma chain may provide cooperation with and/or compensation for DAP12 in MAIR-II-mediated inflammatory responses by peritoneal macrophages.  相似文献   

17.
We investigated the capacity of mouse bone marrow-derived macrophages (BMDM) to produce interleukin 1 (IL 1), interleukin-6 (IL 6), and tumor necrosis factor (TNF) upon lipopolysaccharide (LPS) stimulation. BMDM were allowed to differentiate either in the presence of conditioned medium (from WEHI-3 or L cells), or in the presence of recombinant cytokines (IL 3, macrophage-colony stimulating factor [M-CSF], or granulocyte/macrophage-colony stimulating factor [GM-CSF]). Cells were maintained in culture up to 3 weeks and tested at different times. Significant spontaneous cytokine production was never observed. BMDM rapidly acquired the capacity to elaborate cytokine upon LPS activation. LPS-triggered BMDM were able to produce IL 1, IL 6, and TNF, throughout the culture period, although 2- to 3-week-old cells lost their ability to release IL 1 while accumulation of intracellular IL 1 remained unchanged. The dissociation between synthesis and release of IL 1 was not correlated with a significant modification of the specific binding of LPS onto the cell surface.  相似文献   

18.
In this study, we detailed in a time-dependent manner the trafficking, the recycling, and the structural fate of Brucella abortus LPS in murine peritoneal macrophages by immunofluorescence, ELISA, and biochemical analyses. The intracellular pathway of B. abortus LPS, a nonclassical endotoxin, was investigated both in vivo after LPS injection in the peritoneal cavity of mice and in vitro after LPS incubation with macrophages. We also followed LPS trafficking after infection of macrophages with B. abortus strain 19. After binding to the cell surface and internalization, Brucella LPS is routed from early endosomes to lysosomes with unusual slow kinetics. It accumulates there for at least 24 h. Later, LPS leaves lysosomes and reaches the macrophage cell surface. This recycling pathway is also observed for LPS released by Brucella S19 following in vitro infection. Indeed, by 72 h postinfection, bacteria are degraded by macrophages and LPS is located inside lysosomes dispersed at the cell periphery. From 72 h onward, LPS is gradually detected at the plasma membrane. In each case, the LPS present at the cell surface is found in large clusters with the O-chain facing the extracellular medium. Both the antigenicity and heterogenicity of the O-chain moiety are preserved during the intracellular trafficking. We demonstrate that LPS is not cleared by macrophages either in vitro or in vivo after 3 mo, exposing its immunogenic moiety toward the extracellular medium.  相似文献   

19.
Fibrin deposition is an important histopathologic feature of inflammation and is mediated, in part, by monocyte/macrophage procoagulants. rIFN gamma acted in synergy with suboptimal levels of bacterial LPS by priming thioglycollate-induced mouse peritoneal exudate cells (TG-PEC) to express high levels of surface procoagulant. TFN-alpha beta, TFN-alpha, IL-1, either alone or in combination with LPS or IFN-gamma, had no effect on macrophage procoagulant activity expression. In contrast to the dramatic increases of macrophage procoagulant activity induced by IFN-gamma/LPS, on exudate macrophages, normal peritoneal macrophages, or peripheral blood monocytes were unresponsive suggesting that the state of activation of the macrophage determines reactivity. IFN-gamma induced a Factor VIIa-like activity detected only after cell disruption. Synergy between LPS and IFN-gamma-induced procoagulants may occur as the result of the assembly of the thromboplastin (induced by LPS), Factor VII/VIIa complex on the macrophage surface. RNA synthesis was required for procoagulant induction. Procoagulant expression may, as for other cytokines involved in inflammatory responses, be regulated by short lived repressor proteins as low dose cycloheximide superinduced procoagulant responses to both LPS and IFN-gamma and caused the extracellular expression of procoagulant in response to IFN-gamma. This study suggests an important role for IFN-gamma in the assembly of components of the extrinsic coagulant cascade on the macrophage surface. The synergy between IFN-gamma and LPS may moderate macrophage-initiated fibrin deposition characteristic of inflammatory responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号