首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A toxin produced by Pseudomonas tolaasii, tolaasin, causes brown blotch disease in mushrooms. Tolaasin forms pores on the cellular membrane and destroys cell structure. Inhibiting the ability of tolaasin to form ion channels may be an effective method to protect against attack by tolaasin. However, it is first necessary to elucidate the three-dimensional structure of the ion channels formed by tolaasin. In this study, the structure of the tolaasin ion channel was determined in silico based on data obtained from nuclear magnetic resonance experiments.  相似文献   

2.
In the plasma membranes of mammalian proximal renal tubules single ion channels were investigated mainly in isolated tubules perfused on one side, in isolated nonperfused (collapsed) tubules and in primary cell cultures. With these techniques, the following results were obtained: in the luminal membrane of isolated one-sided perfused tubules of rabbit and mouse S3 segments, K(+)-selective channels with single-channel conductance (g) of 33 pS and 63 pS, respectively, were recorded. In primary cultures of rabbit S1 segments, a small-conductance (42 pS) as well as a large-conductance (200 pS) K+ channel were observed. The latter was Ca2(+)- and voltage-sensitive. In cultured cells a Ca2(+)-activated, nonselective cation channel with g = 25 pS was also recorded. On the other hand, an amiloride-sensitive channel with g = 12 pS, which was highly selective for Na+ over K+, was observed in the isolated perfused S3 segment. In the basolateral membrane of isolated perfused S3 segments, two types of K+ channels with g = 46 pS and 36 pS, respectively, were observed. The latter channel was not dependent on cytosolic Ca2+ in cell-excised patches. A K+ channel with g = 54 pS was recorded in isolated nonperfused S1 segments. This channel showed inward rectification and was more active at depolarizing potentials. In isolated perfused S3 segments, in addition to the K+ channels also a nonselective cation channel with g = 28 pS was observed. This channel was highly dependent on cytosolic Ca2+ in cell-free patches. It can be concluded that the K+ channels both in the luminal and contraluminal cell membrane are involved in the generation of the cell potential. Na+ channels in the luminal membrane may participate in Na+ reabsorption, whereas the function of a basolateral cation channel remains unclear. Recently, single anion-selective channels were recorded in membranes of endocytotic vesicles, isolated from rat proximal tubules. Vesicles were enlarged by the dehydration/rehydration method and investigated with the patch clamp technique. The Cl- channel had a conductance of 73 pS, the current-voltage curve was linear and the channel inactivated at high negative clamp potentials. It is suggested that this channel is responsible for charge neutrality during active H+ uptake into the endosomes.  相似文献   

3.
The single channel properties of TASK-like oxygen-sensitive potassium channels were studied in rat carotid body type 1 cells. We observed channels with rapid bursting kinetics, active at resting membrane potentials. These channels were highly potassium selective with a slope conductance of 14-16 pS, values similar to those reported for TASK-1. In the absence of extracellular divalent cations, however, single channel conductance increased to 28 pS in a manner similar to that reported for TASK-3. After patch excision, channel activity ran down rapidly. Channel activity in inside-out patches was markedly increased by 2 and 5 mM ATP and by 2 mM ADP but not by 100 microM ADP or 1 mM AMP. In cell-attached patches, both cyanide and 2,4-dinitrophenol strongly inhibited channel activity. We conclude that 1) whilst the properties of this channel are consistent with it being a TASK-like potassium channel they do not precisely conform to those of either TASK-1 or TASK-3, 2) channel activity is highly dependent on cytosolic factors including ATP, and 3) changes in energy metabolism may play a role in regulating the activity of these background K+ channels.  相似文献   

4.
The septal membranes of the median and lateral giant axons of earthworm, which contain gap junctions, were exposed by cutting one segment of the cord. Patch recordings were obtained from the exposed cytoplasmic side of the septum. Seal resistances ranged from 2 to 15 G omega. The patch could be excised (detached) or left attached to the whole cell. Two types of channels were observed. One type was blocked by tetraethylammonium (TEA) or Cs+ and had a unitary conductance of 30-40 pS. It appears to be a K+ channel. The other channel type had a unitary conductance of 90-110 pS and was unaffected by TEA+ or Cs+. In the detached configuration the channel was shown to conduct Cs+, K+, Na+, TMA+, Cl- and TEA+ even in the presence of 2 mM Zn2+, 1 mM Ni2+, 1 mM Co2+, and 4 mM 4-aminopyridine. The conductance ratios relative to K+ were 1.0 for Cs+, 0.84 for Na+, 0.64 for TMA+, 0.52 for Cl- and 0.2 for TEA+. The channel appears to be voltage insensitive whether monitored in detached or attached recording mode. Both H+ and Ca2+ reduce the probability of opening. Thus, the 100 pS channel has many of the properties expected of a gap junction channel.  相似文献   

5.
Voltage activated calcium channels were studied in rat cerebellar granule cells in primary culture. Macroscopic currents, carried by 20mM Ba2+, were measured in the whole-cell configuration. Slowly inactivating macroscopic currents, with a maximum value at a membrane potential around 5 mV, were recorded between the 1st and the 4th day in culture. These currents were completely blocked by 5mM Co2+, partially blocked by 10 microM nifedipine, and increased by 2 to 5 microM BAY K-8644. Two types of channels, in the presence of 80 mM Ba2+, were identified by single channel recording in cell-attached patches. The first type, which was dihydropyridine agonist sensitive, had a conductance of 18 pS, a half activation potential of more than 10 mV and did not inactivate. This type of channel was the only type found during the first four days in culture, although it was also present up to the 11th day. The second type of channel was dihydropyridine insensitive, had a conductance of 10 pS, a half activation potential less than -15 mV, and displayed voltage dependent inactivation. This second type of channel was found in cells for more than four days in culture.  相似文献   

6.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

7.
M Sato  K Inoue    M Kasai 《Biophysical journal》1992,63(6):1500-1505
An anion selective channel and three types of cation selective channels were found in planar lipid bilayers incorporating synaptic vesicles from rat brains. In asymmetric KCl solutions (cis: 300 mM/trans: 150 mM), the anion selective channel showed a single-channel conductance of 94 pS and was inactivated by negative voltages and by 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid disodium salt (SITS). In the same solution, single-channel conductances of three types of cation selective channels were 250 pS (Type 1), 248 pS (Type 2), and 213 pS (Type 3), respectively. These channels resembled one another in single-channel conductances but were different in gating behaviors. Type 1 channel, which was most frequently observed, had a remarkable subconducting state (175 pS). Type 2 channel had a flickering state that increased as the potential became more positive, and a long inactive state that increased as the potentials were more negative. Type 3 channel, which was also sensitive to the potentials, had the open-channel probability increased as the potential became more positive.  相似文献   

8.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
High conductance gamma-aminobutyric acid type A (GABA(A)) channels (>40 picosiemens (pS)) have been reported in some studies on GABA(A) channels in situ but not in others, whereas recombinant GABA(A) channels do not appear to display conductances above 40 pS. Furthermore, the conductance of some native GABA(A) channels can be increased by diazepam or pentobarbital, which are effects not reported for expressed GABA(A) channels. GABARAP, a protein associated with native GABA(A) channels, has been reported to cause clustering of GABA(A) receptors and changes in channel kinetics. We have recorded single channel currents activated by GABA in L929 cells expressing alpha(1), beta(1), and gamma(2S) subunits of human GABA(A) receptors. Channel conductance was never higher than 40 pS and was not significantly increased by diazepam or pentobarbital, although open probability was increased. In contrast, in cells expressing the same three subunits together with GABARAP, channel conductance could be significantly higher than 40 pS, and channel conductance was increased by diazepam and pentobarbital. GABARAP caused clustering of receptors in L929 cells, and we suggest that there may be interactions between subunits of clustered GABA(A) receptors that make them open co-operatively to give high conductance "channels." Recombinant channels may require the influence of GABARAP and perhaps other intracellular proteins to adopt a fuller repertoire of properties of native channels.  相似文献   

10.
(1) Single myelinated nerve fibers of Rana esculenta were treated with the steroidal alkaloid batrachotoxin, and Na+ currents and Na+-current fluctuations were measured near the resting potential under voltage-clamp conditions. Between test pulses the fibres were held at hyperpolarizing membrane potentials. (2) The spectral density of Na+-current fluctuations was fitted by the sum of a 1/f component and a Lorentzian function. The time constant tau c = 1/(2 pi fc) obtained from the corner frequency fc of the Lorentzian function approximately agreed with the activation time constant tau m of the macroscopic currents. (3) The conductance gamma of a single Na+ channel modified by batrachotoxin was calculated from the integral of the Lorentzian function and the steady-state Na+ current. At the resting potential V = 0 we obtained gamma - 1.6 pS, higher gamma-values of 3.2 and 3.45 pS were found at V = --8 and --16 mV, respectively. (4) The conductance of a modified Na+ channel is significantly lower than the values 6.4 to 8.85 pS reported in the literature for normal Na+ channels. Hence, our experiments are in agreement with the view that batrachotoxin acts in an 'all-or-none' manner on Na+ channels and creates a distinct population of modified channels.  相似文献   

11.
A patch-clamp study of histamine-secreting cells   总被引:9,自引:2,他引:7       下载免费PDF全文
The ionic conductances in rat basophilic leukemia cells (RBL-2H3) and rat peritoneal mast cells were investigated using the patch-clamp technique. These two cell types were found to have different electrophysiological properties in the resting state. The only significant conductance of RBL-2H3 cells was a K+-selective inward rectifier. The single channel conductance at room temperature increased from 2-3 pS at 2.8 mM external K+ to 26 pS at 130 mM K+. This conductance, which appeared to determine the resting potential, could be blocked by Na+ and Ba2+ in a voltage-dependent manner. Rat peritoneal mast cells had a whole-cell conductance of only 10-30 pS, and the resting potential was close to zero. Sometimes discrete openings of channels were observed in the whole-cell configuration. When the Ca2+ concentration on the cytoplasmic side of the membrane was elevated, two types of channels with poor ion specificity appeared. A cation channel, observed at a Ca2+ concentration of approximately 1 microM, had a unit conductance of 30 pS. The other channel, activated at several hundred micromolar Ca2+, was anion selective and had a unit conductance of approximately 380 pS in normal Ringer solution and a bell-shaped voltage dependence. Antigenic stimulation did not cause significant changes in the ionic conductances in either cell type, which suggests that these cells use a mechanism different from ionic currents in stimulus-secretion coupling.  相似文献   

12.
Binding studies as well as affinity labelling and immunoblot techniques were used to identify and characterize the receptors for Ca2+ channel blockers in Drosophila brain membranes. Despite structural analogies with mammalian receptors, Drosophila binding sites for phenylalkylamines and 1,4-dihydropyridines, unlike those described in skeletal and cardiac muscle, were found to be located on separate Ca2+ channels. Single-channel bilayer recordings from reconstituted membranes revealed the presence of eight distinct cobalt-sensitive Ba2+-conducting channels in Drosophila brain membrane preparations. In good agreement with binding studies, the most frequently observed Ca2+ channel type (Ba2+ conductance of 13 pS) was extremely sensitive to phenylalkylamines but not affected by micromolar concentrations of 1,4-dihydropyridines. Distinct 1,4-dihydropyridine-sensitive and phenylalkylamine-insensitive channels were also identified. They had unitary Ba2+ conductances of 21 and 31 pS. A detailed analysis of drug action showed that both 1,4-dihydropyridines and phenylalkylamines first increased channel open state probability before fully blocking channel activity. Other types of channels have been identified with unitary Ba2+ conductances of 9, 41, 53, 64 and 81 pS. They were insensitive to the previously described organic Ca2+ channel blockers. The Drosophila system seems to be a unique model to analyse the properties of several different types of Ca2+ channels and particularly those of channel types that are uniquely blocked by phenylalkylamines or uniquely blocked by 1,4-dihydropyridines.  相似文献   

13.
Halide permeability sequences were obtained from reversal potential measurements of single-channel currents through 10 pS and 20 pS anion channels in human airway epithelial cells. The sequences obtained were Cl- greater than I- greater than Br- greater than or equal to F- for the 10 pS channel and Cl- greater than I- greater than or equal to Br- greater than or equal to F- for the 20 pS channel. However, the permeability differences were not large, the greatest being 0.66 for the ratio of fluoride to chloride permeability in the 20 pS channel. Single-channel currents were also measured with solutions of constant halide concentration but varying ratios of chloride to fluoride ions. An anomalous mole fraction effect was observed for the 20 pS channel but not for the 10 pS channel, suggesting that the former is a multi-ion channel. Comparison of the halide permeability sequences of these two channels with those of whole-cell currents in other epithelial cells does not support their involvement in any of the known whole-cell epithelial currents.  相似文献   

14.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

15.
Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.  相似文献   

16.
We investigated the properties of single K+ channels in the soma membrane of embryonic leech ganglion cells using the patch-clamp technique. We compared these K+ channels with the K+ channels found previously in Retzius neurons of the adult leech. In ganglion cells of 9- to 15-day-old embryos we characterized eight different types of K+ channels with mean conductances of 21, 55, 84, 111, 122, 132, 149 and 223 pS. The 55 pS and 84 pS channels showed flickering and were active for less than 2 min after excising the patch. The 111 pS channel was an outward rectifier, and the open state probability (p o ) decreased in the inside-out configuration when the Ca2+ concentration was raised from pCa 7 to pCa 3. The 122 pS channel also showed outward rectification. This type of channel was activated after changing from the cell-attached to the inside-out configuration and it did not inactivate during more than 30 min. The p o was Ca2+- and voltage-insensitive. One hundred μm glibenclamide reversibly reduced p o . The 132 pS channel was an outward rectifier and was Ca2+-insensitive. The 149 pS channel inactivated in the inside-out configuration. The 149- and the 223 pS channel showed inward rectification. The 111 pS channel had similar properties to the Ca2+-dependent K+ channel and the 122 pS channel resembled the ATP-inhibited K+ channel found previously in Retzius neurons of the adult leech. Received: 20 April 1995/Revised: 18 January 1996  相似文献   

17.
Single channel currents have been recorded from cell-attached patches of tumoral adrenocortical cells. Our experiments suggest the existence of three sets of potassium channels in the surface membrane of these cells. All channel types can be recorded in a given membrane patch but some patches have only one type of single channel currents. One channel type has a unitary conductance of about 103 pS. The other two channels have smaller conductances and opposite voltage dependence. In one case channels open on depolarization and have a single channel conductance of 31.6 pS. In the other case the probability of being in the open state increases on hyperpolarization and the single channel conductance is of 21 pS. These channels seem to be similar to the delayed and anomalous rectifying potassium channels seen in other preparations. The role of membrane ionic permeability in steroid release induced by ACTH is discussed.  相似文献   

18.
1. Patch clamp studies on colonic tumor cell line T84 show the presence of chloride channels. 2. The channels are activated by forskolin, PGE2, or 8-Br-cAMP. 3. Single channel conductance was ca 40 pS at the reversal potential, increasing to 70 pS at +80 mV and decreasing to 25 pS at -80 mV. 4. Relative permeabilities were I greater than Br greater than Cl greater than F.  相似文献   

19.
Glutamate and GABA-receptor channels were investigated in explants of rat cerebellum grown in cell culture. The patch-clamp technique was used to examine neurons under whole cell clamp and the properties of channels were derived by analysis of glutamate and GABA-evoked current noise. In addition, single channel currents activated by glutamate were recorded from isolated outside-out patches of membrane. We found evidence for at least two types of glutamate receptor-channels in cerebellar cells. Some neurons exhibited a channel of 50 pS conductance with a Lorentzian noise spectrum of 5.9 ms time constant. Single channels were readily resolved both in whole cell clamp and excised patches. Other neurons possessed low conductance channels which produced two component spectra. Estimates of the single channel conductance gave a value of about 140 fS. GABA channel noise obtained from these cells was also fitted by two component spectra which gave single channel conductance of 16 pS.  相似文献   

20.
Epithelial cells of toad (Bufo bufo) skin were isolated by treatments of the epidermis with collagenase and trypsin. Cl- channels in the basolateral membrane from soma or neck of mitochondria-rich cells were studied in cell-attached and excised inside-out configurations. Of a total of 87 sealed patches only 28 (32%) were electrically active, and in these we identified four different types of Cl- channels. The two major populations constituted Ohmic Cl- channels with limiting conductance (γ125/125) of 10 pS and 30 pS, respectively. A much rarer 150 pS Ohmic Cl- channel was also characterized. From i/V relationships of individual channels the following Goldman-Hodgkin-Katz permeabilities were calculated, 2.2 (±0.1) × 10-14, 5.7 (±0.7) × 10-14, and 32 (±2) × 10-14 cm3/sec, for the 10, 30 and 150 pS Cl- channels, respectively. The 30 pS channel was activated by hyperpolarization. The gating kinetics of the 150 pS channel was complex with burstlike closures within openings of long duration. The fourth type of Cl- channel was studied in patches generating `noisy currents' with no discrete single-channel events, but with vanishing fluctuations at pipette potentials near E Cl. Noise analysis revealed a power spectrum with cutoff frequencies of 1.2 and 13 Hz, indicating that resolution of kinetic steps was limited by small channel currents rather than fast channel gating. From the background noise level we estimated the channel conductance to be less than 1.7 pS. Despite the fact that the majority of patches did not contain electrically active Cl- channels, patches being active, generally, contained more than a single active channel. Thus, for the above three types of resolvable channels, the mean number of active channels per patch amounted to 2.1, 1.4, and 2.0, respectively. This observation, like the finding of few patches with several unresolvable channels, indicates that electrically active Cl- channels are organized in clusters. Received: 10 October 1996/Revised: 8 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号