首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since the advent of investigations into structural genomics, research has focused on correctly identifying domain boundaries, as well as domain similarities and differences in the context of their evolutionary relationships. As the science of structural genomics ramps up adding more and more information into the databanks, questions about the accuracy and completeness of our classification and annotation systems appear on the forefront of this research. A central question of paramount importance is how structural similarity relates to functional similarity. Here, we begin to rigorously and quantitatively answer these questions by first exploring the consensus between the most common protein domain structure annotation databases CATH, SCOP and FSSP. Each of these databases explores the evolutionary relationships between protein domains using a combination of automatic and manual, structural and functional, continuous and discrete similarity measures. In order to examine the issue of consensus thoroughly, we build a generalized graph out of each of these databases and hierarchically cluster these graphs at interval thresholds. We then employ a distance measure to find regions of greatest overlap. Using this procedure we were able not only to enumerate the level of consensus between the different annotation systems, but also to define the graph-theoretical origins behind the annotation schema of class, family and superfamily by observing that the same thresholds that define the best consensus regions between FSSP, SCOP and CATH correspond to distinct, non-random phase-transitions in the structure comparison graph itself. To investigate the correspondence in divergence between structure and function further, we introduce a measure of functional entropy that calculates divergence in function space. First, we use this measure to calculate the general correlation between structural homology and functional proximity. We extend this analysis further by quantitatively calculating the average amount of functional information gained from our understanding of structural distance and the corollary inherent uncertainty that represents the theoretical limit of our ability to infer function from structural similarity. Finally we show how our measure of functional "entropy" translates into a more intuitive concept of functional annotation into similarity EC classes.  相似文献   

2.
Sequence similarity is the most common measure currently used to infer homology between proteins. Typically, homologous protein domains show sequence similarity over their entire lengths. Here we identify Asp box motifs, initially found as repeats in sialidases and neuraminidases, in new structural and sequence contexts. These motifs represent significantly similar sequences, localized to beta hairpins within proteins that are otherwise different in sequence and three-dimensional structure. By performing a combined sequence- and structure-based analysis we detect Asp boxes in more than nine protein families, including bacterial ribonucleases, sulfite oxidases, reelin, netrins, some lipoprotein receptors, and a variety of glycosyl hydrolases. Although the function common to each of these proteins, if any, remains unclear, we discuss possible functions of Asp boxes on the basis of previously determined experimental results and discuss different evolutionary scenarios for the origin of Asp-box containing proteins.  相似文献   

3.
利用同源模建的方法模拟得到了肝细胞生长因子4个Kringle域的三维结构。结果表明,HGFKringle与纤溶酶原Kringle的氨基酸序列具有较高的同源性,其功能区附近的序列比较保守。HGF的Kringlel和3与其它具有Lys结合功能的Kringle相比,功能区的残基发生了变化,可能丧失了结合Lys的功能,而2和4仍具有一定的该功能。根据Kringle 1的模建结构,推测该Kringle功能区的结构为一个通道,该通道的底部和一侧有部分疏水残基,同时两侧还分布着少量酸性或碱性残基,该通道可能具有结合特定肽链的功能,从而与Kringle 2一起实现HGF与受体结合的作用。  相似文献   

4.
改进蛋白质序列空间检索策略是未来蛋白质工程研究的一个关键。本文介绍了一种被称为蛋白质序列-活性相关性(ProSAR)驱动的蛋白质定向进化策略的原理、机器学习算法及应用,为提高蛋白质定向进化效率和解决酶学性质的多维优化问题提供了办法和思路。  相似文献   

5.
Separation and structure-function studies of Taiwan cobra cardiotoxins   总被引:4,自引:0,他引:4  
Six cardiotoxins (CTXs) and one cardiotoxin-like basic protein (CLBP) from Naja naja atra (Taiwan cobra) venom were separated by a SP-Sephadex C-25 column. CTXn and CTXI were well separated by eluting with ammonium acetate buffer, and the separation of CLBP from CTXIV and CTXV mixtures was achieved using sodium phosphate buffer. These findings suggest a differential interaction of CTXs with the chromatographic matrix using different buffer systems. Chemical modification studies on cationic residues of CTXI suggested that there was no single lysine or arginine residue exclusively responsible for its biological activity. Moreover, it was found that the cytotoxicity and hemolytic sites of CTXI could be dissociated by chemical modifications. It suggests the potentiality for preparing toxin derivatives in which a specific activity is retained.  相似文献   

6.
The heart muscle is nourished by a complex system of blood vessels that make up the coronary circulation. Here we show that the design of the coronary circulation has a functional hierarchy. A full anatomic model of the coronary arterial tree, containing millions of blood vessels down to the capillary vessels, was simulated based on previously measured porcine morphometric data. A network analysis of blood flow through every vessel segment was carried out based on the laws of fluid mechanics and appropriate boundary conditions. Our results show an abrupt change in cross-sectional area that demarcates the transition from epicardial (EPCA) to intramyocardial (IMCA) coronary arteries. Furthermore, a similar pattern of blood flow was observed with a corresponding transition from EPCA to IMCA. These results suggest functional differences between the two types of vessels. An additional abrupt change occurs in the IMCA in relation to flow velocity. The velocity is fairly uniform proximal to these vessels but drops significantly distal to those vessels toward the capillary branches. This finding suggests functional differences between large and small IMCA. Collectively, these observations suggest a novel functional hierarchy of the coronary vascular tree and provide direct evidence of a structure-function relation.  相似文献   

7.
The ability to predict and characterize distributions of reactivities over families and even superfamilies of proteins opens the door to an array of analyses regarding functional evolution. In this article, insights into functional evolution in the Kazal inhibitor superfamily are gained by analyzing and comparing predicted association free energy distributions against six serine proteinases, over a number of groups of inhibitors: all possible Kazal inhibitors, natural avian ovomucoid first and third domains, and sets of Kazal inhibitors with statistically weighted combinations of residues. The results indicate that, despite the great hypervariability of residues in the 10 proteinase-binding positions, avian ovomucoid third domains evolved to inhibit enzymes similar to the six enzymes selected, whereas the orthologous first domains are not inhibitors of these enzymes on purpose. Hypervariability arises because of similarity in energetic contribution from multiple residue types; conservation is in terms of functionality, with "good" residues, which make positive or less deleterious contributions to the binding, selected more frequently, and yielding overall the same distributional characteristics. Further analysis of the distributions indicates that while nature did optimize inhibitor strength, the objective may not have been the strongest possible inhibitor against one enzyme but rather an inhibitor that is relatively strong against a number of enzymes.  相似文献   

8.
9.
Insertions and deletions in protein sequences, or indels, can disrupt structure and may result in changes in protein folds during evolution or in association with alternative splicing. Pfl 6 and Xfaso 1 are two proteins in the Cro family that share a common ancestor but have different folds. Sequence alignments of the two proteins show two gaps, one at the N terminus, where the sequence of Xfaso 1 is two residues shorter, and one near the center of the sequence, where the sequence of Pfl 6 is five residues shorter. To test the potential importance of indels in Cro protein evolution, we generated hybrid variants of Pfl 6 and Xfaso 1 with indels in one or both regions, chosen according to several plausible sequence alignments. All but one deletion variant completely unfolded both proteins, showing that a longer N‐terminal sequence was critical for Pfl 6 folding and a longer central region sequence was critical for Xfaso 1 folding. By contrast, Xfaso 1 tolerated a longer N‐terminal sequence with little destabilization, and Pfl 6 tolerated central region insertions, albeit with substantial effects on thermal stability and some perturbation of the surrounding structure. None of the mutations appeared to convert one stable fold into the other. On the basis of this two‐protein comparison, short insertion and deletion mutations probably played a role in evolutionary fold change in the Cro family, but were also not the only factors. Proteins 2013; 81:1988–1996. © 2013 Wiley Periodicals, Inc.  相似文献   

10.

Background

The function of proteins is a direct consequence of their three-dimensional structure. The structural classification of proteins describes the ways of folding patterns all proteins could adopt. Although, the protein folds were described in many ways the functional properties of individual folds were not studied.

Results

We have analyzed two β-barrel folds generally adopted by small proteins to be looking similar but have different topology. On the basis of the topology they could be divided into two different folds named SH3-fold and OB-fold. There was no sequence homology between any of the proteins considered. The sequence diversity and loop variability was found to be important for various binding functions.

Conclusions

The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain like proteins bind to a variety of ligands through loop modulations. A question was raised whether the evolution of these two folds was through DNA shuffling.  相似文献   

11.
12.
Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β-hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation-π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF-B1 peptide, which have α-helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.  相似文献   

13.
Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co‐occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.  相似文献   

14.
Proteins employ a wide variety of folds to perform their biological functions. How are these folds first acquired? An important step toward answering this is to obtain an estimate of the overall prevalence of sequences adopting functional folds. Since tertiary structure is needed for a typical enzyme active site to form, one way to obtain this estimate is to measure the prevalence of sequences supporting a working active site. Although the immense number of sequence combinations makes wholly random sampling unfeasible, two key simplifications may provide a solution. First, given the importance of hydrophobic interactions to protein folding, it seems likely that the sample space can be restricted to sequences carrying the hydropathic signature of a known fold. Second, because folds are stabilized by the cooperative action of many local interactions distributed throughout the structure, the overall problem of fold stabilization may be viewed reasonably as a collection of coupled local problems. This enables the difficulty of the whole problem to be assessed by assessing the difficulty of several smaller problems. Using these simplifications, the difficulty of specifying a working beta-lactamase domain is assessed here. An alignment of homologous domain sequences is used to deduce the pattern of hydropathic constraints along chains that form the domain fold. Starting with a weakly functional sequence carrying this signature, clusters of ten side-chains within the fold are replaced randomly, within the boundaries of the signature, and tested for function. The prevalence of low-level function in four such experiments indicates that roughly one in 10(64) signature-consistent sequences forms a working domain. Combined with the estimated prevalence of plausible hydropathic patterns (for any fold) and of relevant folds for particular functions, this implies the overall prevalence of sequences performing a specific function by any domain-sized fold may be as low as 1 in 10(77), adding to the body of evidence that functional folds require highly extraordinary sequences.  相似文献   

15.
16.
We have completed an exhaustive search for the common spatial arrangements of backbone fragments (SARFs) in nonhomologous proteins. This type of local structural similarity, incorporating short fragments of backbone atoms, arranged not necessarily in the same order along the polypeptide chain, appears to be important for protein function and stability. To estimate the statistical significance of the similarities, we have introduced a similarity score. We present several locally similar structures, with a large similarity score, which have not yet been reported. On the basis of the results of pairwise comparison, we have performed hierarchical cluster analysis of protein structures. Our analysis is not limited by comparison of single chains but also includes complex molecules consisting of several subunits. The SARFs with backbone fragments from different polypeptide chains provide a stable interaction between subunits in protein molecules. In many cases the active site of enzymes is located at the same position relative to the common SARFs, implying a function of the certain SARFs as a universal interface of the protein-substrate interaction.  相似文献   

17.
Kinases that catalyze phosphorylation of sugars, called here sugar kinases, can be divided into at least three distinct nonhomologous families. The first is the hexokinase family, which contains many prokaryotic and eukaryotic sugar kinases with diverse specificities, including a new member, rhamnokinase from Salmonella typhimurium. The three-dimensional structure of hexokinase is known and can be used to build models of functionally important regions of other kinases in this family. The second is the ribokinase family, of unknown three-dimensional structure, and comprises pro- and eukaryotic ribokinases, bacterial fructokinases, the minor 6-phosphofructokinase 2 from Escherichia coli, 6-phosphotagatokinase, 1-phosphofructokinase, and, possibly, inosine-guanosine kinase. The third family, also of unknown three-dimensional structure, contains several bacterial and yeast galactokinases and eukaryotic mevalonate and phosphomevalonate kinases and may have a substrate binding region in common with homoserine kinases. Each of the three families of sugar kinases appears to have a distinct three-dimensional fold, since conserved sequence patterns are strikingly different for the three families. Yet each catalyzes chemically equivalent reactions on similar or identical substrates. The enzymatic function of sugar phosphorylation appears to have evolved independently on the three distinct structural frameworks, by convergent evolution. In addition, evolutionary trees reveal that (1) fructokinase specificity has evolved independently in both the hexokinase and ribokinase families and (2) glucose specificity has evolved independently in different branches of the hexokinase family. These are examples of independent Darwinian adaptation of a structure to the same substrate at different evolutionary times. The flexible combination of active sites and three-dimensional folds observed in nature can be exploited by protein engineers in designing and optimizing enzymatic function.  相似文献   

18.
Finding and identifying circular permuted protein pairs (CPP) is one of the harder tasks for structure alignment programs, because of the different location of the break in the polypeptide chain connectivity. The protein structure alignment tool GANGSTA+ was used to search for CPPs in a database of nearly 10,000 protein structures. It also allows determination of the statistical significance of the occurrence of circular permutations in the protein universe. The number of detected CPPs was found to be higher than expected, raising questions about the evolutionary processes leading to CPPs. The GANGSTA+ protein structure alignment tool is available online via the web server at http://gangsta.chemie.fu‐berlin.de . On the same webpage the complete data base of similar protein structure pairs based on the ASTRAL40 set of protein domains is provided and one can select CPPs specifically. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Investigations into the evolution of the primate brain have tended to neglect the role of connectivity in determining which brain structures have changed in size, focusing instead on changes in the size of the whole brain or of individual brain structures, such as the neocortex, in isolation. We show that the primate cerebellum, neocortex, vestibular nuclei and relays between them exhibit correlated volumetric evolution, even after removing the effects of change in other structures. The patterns of correlated evolution among individual nuclei correspond to their known patterns of connectivity. These results support the idea that the brain evolved by mosaic size change in arrays of functionally connected structures. Furthermore, they suggest that the much discussed expansion of the primate neocortex should be re-evaluated in the light of conjoint cerebellar expansion.  相似文献   

20.
This and the next issue of Evolutionary Anthropology are devoted to presenting the most recent advances in our understanding of the evolution of culture in non‐human primates and humans. This effort was stimulated in part by the recent explosion of comparative evidence for extensive communicative and material culture in two great apes, chimpanzees 1 and orangutans. 2 Before this evidence accumulated, it was easy for anthropologists to maintain that examples of non‐human primate culture were little more impressive than those put forward for many other non‐human species, and thus they could leave intact the seemingly huge gap between animal and human culture. The overall purpose of this special pair of issues of Evolutionary Anthropology is to ask how and why culture has changed over evolutionary time from non‐primates to non‐human primates to early hominins to modern humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号