共查询到20条相似文献,搜索用时 0 毫秒
1.
Toll receptors were first identified as an essential molecule for embryonic patterning in Drosophila and were subsequently shown to be a key in antibacterial and antifungal immunity in adult flies. Toll receptors have been conserved throughout evolution. In mammals, TLRs have been implicated in both inflammatory responses and innate host defense to pathogens. The 11 different TLRs recognize conserved molecular patterns of microbial pathogens termed pathogen-specific molecular patterns (PAMPs), that permit to confer responsiveness to a wide variety of pathogens. Endogenous ligands are also able to activate TLRs. All adult tissue is capable to express at least one of member of TLR family, but a largest repertoire of TLRs is found in tissues exposed to the external environment. The TLR activation induce the NF-kappaB translocation to the nucleus and cytokine secretion. Since the primary function of skin is to provide an effective barrier against outside agression, it is likely that keratinocytes may play a role in a rapid and efficient host defence system, and the fact that keratinocytes are capable of expressing a wide variety of TLRs is subsequently not surprising. 相似文献
2.
Toll-like receptors and innate immunity 总被引:5,自引:0,他引:5
Himanshu Kumar 《Biochemical and biophysical research communications》2009,388(4):621-625
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling. 相似文献
3.
Toll-like receptors and innate immunity 总被引:8,自引:0,他引:8
Medzhitov R 《Nature reviews. Immunology》2001,1(2):135-145
Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, these receptors have evolved to recognize conserved products unique to microbial metabolism. This specificity allows the Toll proteins to detect the presence of infection and to induce activation of inflammatory and antimicrobial innate immune responses. Recognition of microbial products by Toll-like receptors expressed on dendritic cells triggers functional maturation of dendritic cells and leads to initiation of antigen-specific adaptive immune responses. 相似文献
4.
5.
Innate sensing of self and non-self RNAs by Toll-like receptors 总被引:9,自引:0,他引:9
Sioud M 《Trends in molecular medicine》2006,12(4):167-176
Toll-like receptors (TLRs) have an important role in innate immunity in mammals by recognizing conserved microbial components that are known as pathogen-associated molecular patterns (PAMPs). Although the majority of these receptors sense pathogen components on the cell surface, a subset of them (TLR3, TLR7, TLR8 and TLR9) senses viral and bacterial nucleic acids in endosomal compartments. Of considerable interest is the recent finding that TLR7 and TLR8 can also recognize small interfering RNA (siRNA), which is the main effector in RNA interference. This immune activation by siRNAs can be abrogated by the 2'-ribose modification of uridines. Here, we discuss the recent developments that have expanded the understanding of self-non-self discrimination of RNAs by the innate immune system, and consider future directions for therapeutic applications of these findings. 相似文献
6.
Toll-like receptors: linking innate and adaptive immunity 总被引:13,自引:0,他引:13
Detection of and response to microbial infections by the immune system depends largely on a family of pattern-recognition receptors called Toll-like receptors (TLRs). These receptors recognize conserved molecular products derived from various classes of pathogens, including Gram-positive and -negative bacteria, DNA and RNA viruses, fungi and protozoa. Recognition of ligands by TLRs leads to a series of signaling events resulting in induction of acute responses necessary to kill the pathogen. TLRs are also responsible for the induction of dendritic cell maturation, which is responsible and necessary for initiation of adaptive immune responses. Although TLRs control induction of adaptive immunity, it is not clear at this point how responses are appropriately tailored by individual TLRs to the advantage of the host. 相似文献
7.
Toll样受体家族是一类模式识别受体,它介导了一个植物,昆虫,哺乳动物共同拥有的高度保守的信号通路。最近几年相继发现了多种人类Toll样受体以及相关的病原微生物配体,这些配体涵盖了病毒,细菌,真菌等微生物上多种保守的病原相关分子模式。可见Toll样受体在多种病原微生物及其产物的识别和免疫防御反应中有重要的作用。 相似文献
8.
Akira S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1579):2748-2755
Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection. 相似文献
9.
Innate immune recognition of microbes through Nod1 and Nod2: implications for disease 总被引:3,自引:0,他引:3
Nod1 and Nod2 are cytosolic proteins involved in intracellular recognition of microbes and their products. Recently, it was shown that these proteins recognize different moieties of bacterial peptidoglycan (PGN) mediating non-specific pathogen resistance and possibly generating signals for the adaptive immune response. Moreover, mutations in the gene encoding Nod2 are associated with increased susceptibility to chronic inflammatory disorders. 相似文献
10.
Recent work implicates Toll-like receptor (TLR) proteins as regulators of innate immune cell activation induced by Mycobacterium tuberculosis, which continues to ravage nearly one-third of the world's population. Novel insights into how TLR proteins may dictate the nature and extent of cellular immune responses against this pathogen will be discussed. 相似文献
11.
Viruses are obligate parasites which are able to infect cells of all living organisms. Multiple antiviral defense mechanisms have appeared early in evolution of the immune system. Higher vertebrates have the most complex antiviral immunity which is based on both innate and adoptive immune responses. However, majority of living organisms, including plants and invertebrates, rely exclusively on innate immune mechanisms for protection against viral infections. There are some striking similarities in several components of the innate immune recognition between mammals, plants and insects, rendering these signaling cascades as highly conserved in the evolution of the immune system. This review summarizes recent advances in the field of innate immune recognition of viruses, with particular interest on pattern-recognition receptors. 相似文献
12.
Innate immunity in rice 总被引:2,自引:0,他引:2
13.
Toll-like receptors 总被引:18,自引:0,他引:18
Toll-like receptors (TLRs) are a growing family of molecules involved in innate immunity. Accumulating evidence suggests that TLR molecules are involved in signalling receptor complexes which recognise components of Gram-positive and Gram-negative bacteria and mycobacteria. Differential expression and regulation as well as distinct though overlapping ligand recognition patterns may underlie the existence of a vast TLR family. Apparent structural and functional redundancy may render certain outputs of the TLR family robust. 相似文献
14.
15.
Dasari P Nicholson IC Zola H 《Journal of biological regulators and homeostatic agents》2008,22(1):17-26
Toll-like receptors are a family of transmembrane receptors responsible for recognition and initiation of a response to invading microbes by the immune system. As part of the innate immune system, Toll-like receptors recognise pathogen-associated molecular patterns, highly conserved components that are essential to microbial function. Some of ten toll-like receptors identified in humans are able to recognise several pathogen-associated molecular patterns. 相似文献
16.
Toll-like receptor and innate immunity 总被引:1,自引:0,他引:1
17.
Innate and acquired immunity in atherogenesis 总被引:33,自引:0,他引:33
Binder CJ Chang MK Shaw PX Miller YI Hartvigsen K Dewan A Witztum JL 《Nature medicine》2002,8(11):1218-1226
18.
Viruses and Toll-like receptors 总被引:3,自引:0,他引:3
Recently a number of viruses, including a poxvirus, herpesvirus, retrovirus and two paramyxoviruses, have been shown to activate cells via Toll-like receptor family members. Here we postulate that although activation via Toll-like receptor molecules can lead to anti-viral innate immune responses, in some cases viruses may use these responses to ameliorate infection. 相似文献
19.
Viruses and Toll-like receptors 总被引:1,自引:0,他引:1
Production of inflammatory cytokines and type I interferons by mammalian cells is mediated through virus-specific activation of Toll-like receptors (TLRs). Known roles for different TLRs and speculation as to their roles in viral pathogenesis and immunity are discussed in this review. 相似文献
20.