首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
TANK-binding kinase 1 (TBK1) and inducible IκB-kinase (IKK-i) are central regulators of type-I interferon induction. They are associated with three adaptor proteins called TANK, Sintbad (or TBKBP1) and NAP1 (or TBKBP2, AZI2) whose functional relationship to TBK1 and IKK-i is poorly understood. We performed a systematic affinity purification-mass spectrometry approach to derive a comprehensive TBK1/IKK-i molecular network. The most salient feature of the network is the mutual exclusive interaction of the adaptors with the kinases, suggesting distinct alternative complexes. Immunofluorescence data indicated that the individual adaptors reside in different subcellular locations. TANK, Sintbad and NAP1 competed for binding of TBK1. The binding site for all three adaptors was mapped to the C-terminal coiled-coil 2 region of TBK1. Point mutants that affect binding of individual adaptors were used to reconstitute TBK1/IKK-i-deficient cells and dissect the functional relevance of the individual kinase-adaptor edges within the network. Using a microarray-derived gene expression signature of TBK1 in response virus infection or poly(I∶C) stimulation, we found that TBK1 activation was strictly dependent on the integrity of the TBK1/TANK interaction.  相似文献   

3.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

4.
Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK‐binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin‐related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ε (IKKε) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKε and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7‐dependent target genes, providing a molecular mechanism that allows the control of TANK function.  相似文献   

5.
6.
The activation of NF-kappaB by receptors in the tumor necrosis factor (TNF) receptor and Toll/interleukin-1 (IL-1) receptor families requires the TRAF family of adaptor proteins. Receptor oligomerization causes the recruitment of TRAFs to the receptor complex, followed by the activation of a kinase cascade that results in the phosphorylation of IkappaB. TANK is a TRAF-binding protein that can inhibit the binding of TRAFs to receptor tails and can also inhibit NF-kappaB activation by these receptors. However, TANK also displays the ability to stimulate TRAF-mediated NF-kappaB activation. In this report, we investigate the mechanism of the stimulatory activity of TANK. We find that TANK interacts with TBK1 (TANK-binding kinase 1), a novel IKK-related kinase that can activate NF-kappaB in a kinase-dependent manner. TBK1, TANK and TRAF2 can form a ternary complex, and complex formation appears to be required for TBK1 activity. Kinase-inactive TBK1 inhibits TANK-mediated NF-kappaB activation but does not block the activation mediated by TNF-alpha, IL-1 or CD40. The TBK1-TANK-TRAF2 signaling complex functions upstream of NIK and the IKK complex and represents an alternative to the receptor signaling complex for TRAF-mediated activation of NF-kappaB.  相似文献   

7.
ABSTRACT

Parkinson disease (PD) is a disabling, incurable disorder with increasing prevalence in the western world. In rare cases PD is caused by mutations in the genes for PINK1 (PTEN induced kinase 1) or PRKN (parkin RBR E3 ubiquitin protein ligase), which impair the selective autophagic elimination of damaged mitochondria (mitophagy). Mutations in the gene encoding LRRK2 (leucine rich repeat kinase 2) are the most common monogenic cause of PD. Here, we report that the LRRK2 kinase substrate RAB10 accumulates on depolarized mitochondria in a PINK1- and PRKN-dependent manner. RAB10 binds the autophagy receptor OPTN (optineurin), promotes OPTN accumulation on depolarized mitochondria and facilitates mitophagy. In PD patients with the two most common LRRK2 mutations (G2019S and R1441C), RAB10 phosphorylation at threonine 73 is enhanced, while RAB10 interaction with OPTN, accumulation of RAB10 and OPTN on depolarized mitochondria, depolarization-induced mitophagy and mitochondrial function are all impaired. These defects in LRRK2 mutant patient cells are rescued by LRRK2 knockdown and LRRK2 kinase inhibition. A phosphomimetic RAB10 mutant showed less OPTN interaction and less translocation to depolarized mitochondria than wild-type RAB10, and failed to rescue mitophagy in LRRK2 mutant cells. These data connect LRRK2 with PINK1- and PRKN-mediated mitophagy via its substrate RAB10, and indicate that the pathogenic effects of mutations in LRRK2, PINK1 and PRKN may converge on a common pathway.

Abbreviations : ACTB: actin beta; ATP5F1B: ATP synthase F1 subunit beta; CALCOCO2: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; Co-IP: co-immunoprecipitation; EBSS: Earle’s balanced salt solution; GFP: green fluorescent protein; HSPD1: heat shock protein family D (Hsp60) member 1; LAMP1: lysosomal associated membrane protein 1; LRRK2: leucine rich repeat kinase 2; IF: immunofluorescence; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RHOT1: ras homolog family member T1; ROS: reactive oxygen species; TBK1: TANK binding kinase 1; WB: western blot.  相似文献   

8.
Type I interferon gene induction relies on IKK-related kinase TBK1 and IKKepsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins that assemble these kinase complexes are poorly characterized. We show here that TANK/ITRAF is required for the TBK1- and IKKepsilon-mediated IRF3/7 phosphorylations through some Toll-like receptor-dependent pathways and is part of a TRAF3-containing complex. Moreover, TANK is dispensable for the early phase of double-stranded RNA-mediated IRF3 phosphorylation. Interestingly, TANK is heavily phosphorylated by TBK1-IKKepsilon upon lipopolysaccharide stimulation and is also subject to lipopolysaccharide- and TBK1-IKKepsilon-mediated Lys(63)-linked polyubiquitination, a mechanism that does not require TBK1-IKKepsilon kinase activity. Thus, we have identified TANK as a scaffold protein that assembles some but not all IRF3/7-phosphorylating TBK1-IKKepsilon complexes and demonstrated that these kinases possess two functions, namely the phosphorylation of both IRF3/7 and TANK as well as the recruitment of an E3 ligase for Lys(63)-linked polyubiquitination of their scaffold protein, TANK.  相似文献   

9.
TANK‐binding kinase 1 (TBK1) activation is a central event in type I interferon production in anti‐virus innate immunity. However, the regulatory mechanism underlying TBK1 activation remains unclear. Here we report that Raf kinase inhibitory protein (RKIP) is essential for TBK1 activation and type I interferon production triggered by viral infection. Upon viral infection, RKIP is phosphorylated at serine 109 (S109) by TBK1. Phosphorylation of RKIP enhances its interaction with TBK1 and in turn promotes TBK1 autophosphorylation. Mutation of RKIP S109 to alanine abrogates the interaction between RKIP and TBK1, and the anti‐viral function of RKIP. RKIP deficiency inhibits intracellular double‐stranded RNA‐ or DNA‐induced type I interferon production. Consistently, RKIP deficiency renders the mice more susceptible to vesicular stomatitis virus (VSV) and herpes simplex virus (HSV) infections. This study reveals a previously unrecognized positive feedback loop between RKIP and TBK1 that is essential for type I interferon production in anti‐viral innate immunity.  相似文献   

10.
目的:构建TANK结合激酶1(TBK1)相关激酶活性缺失突变体和泛素样结构域突变体真核表达载体,检测该基因相关突变体在293细胞中的表达,并利用萤光素酶报告基因实验检测其生物活性。方法:根据文献报道的突变序列及QuickChange Site-Directed Mutagenesis实验设计手册,设计合成2条针对TBK1相关激酶活性缺失突变体和泛素样结构域突变体的引物,以实验室之前构建的TBK1野生型真核表达载体为模板,构建TBK1激酶活性缺失突变体和泛素样结构域突变体真核表达载体,分别命名为pcDNA3-Flag-TBK1(KD)、pcDNA3-Flag-TBK1(ΔULD)。以LipofactAMINE2000转染试剂转染至293细胞中进行瞬时表达,利用萤光素酶实验检测2种TBK1突变体诱导β干扰素(IFN-β)转录的情况。结果:测序结果表明,TBK1相关激酶活性缺失突变体和泛素样结构域缺失突变体真核表达载体构建成功,Western印迹检测表明其在293细胞中获得有效表达;用萤光素酶报告基因实验检测,与野生型TBK1相比,其相关激酶活性缺失突变体和泛素样结构域缺失突变体诱导IFN-β转录激活的作用明显降低。结论:真核表达的TBK1相关激酶活性缺失突变体和泛素样结构域突变体具有相应的生物学活性,为研究其功能奠定了基础。  相似文献   

11.
OPTN (optineurin), a ubiquitin-binding scaffold protein, functions as an important macroautophagy/autophagy receptor in selective autophagy processes. Mutations in OPTN have been linked with human neurodegenerative diseases including ALS and glaucoma. However, the mechanistic basis underlying the recognition of ubiquitin by OPTN and its regulation by TBK1-mediated phosphorylation are still elusive. Here, we demonstrate that the UBAN domain of OPTN preferentially recognizes linear ubiquitin chain and forms an asymmetric 2:1 stoichiometry complex with the linear diubiquitin. In addition, our results provide new mechanistic insights into how phosphorylation of UBAN would regulate the ubiquitin-binding ability of OPTN and how disease-associated mutations in the OPTN UBAN domain disrupt its interaction with ubiquitin. Finally, we show that defects in ubiquitin-binding may affect the recruitment of OPTN to linear ubiquitin-decorated mutant Huntington protein aggregates. Taken together, our findings clarify the interaction mode between UBAN and linear ubiquitin chain in general, and expand our knowledge of the molecular mechanism of ubiquitin-decorated substrates recognition by OPTN as well as the pathogenesis of neurodegenerative diseases caused by OPTN mutations.  相似文献   

12.
Ma Y  Jin H  Valyi-Nagy T  Cao Y  Yan Z  He B 《Journal of virology》2012,86(4):2188-2196
The γ(1)34.5 protein of herpes simplex viruses (HSV) is essential for viral pathogenesis, where it precludes translational arrest mediated by double-stranded-RNA-dependent protein kinase (PKR). Paradoxically, inhibition of PKR alone is not sufficient for HSV to exhibit viral virulence. Here we report that γ(1)34.5 inhibits TANK binding kinase 1 (TBK1) through its amino-terminal sequences, which facilitates viral replication and neuroinvasion. Compared to wild-type virus, the γ(1)34.5 mutant lacking the amino terminus induces stronger antiviral immunity. This parallels a defect of γ(1)34.5 for interacting with TBK1 and reducing phosphorylation of interferon (IFN) regulatory factor 3. This activity is independent of PKR. Although resistant to IFN treatment, the γ(1)34.5 amino-terminal deletion mutant replicates at an intermediate level between replication of wild-type virus and that of the γ(1)34.5 null mutant in TBK1(+/+) cells. However, such impaired viral growth is not observed in TBK1(-/-) cells, indicating that the interaction of γ(1)34.5 with TBK1 dictates HSV infection. Upon corneal infection, this mutant replicates transiently but barely invades the trigeminal ganglia or brain, which is a difference from wild-type virus and the γ(1)34.5 null mutant. Therefore, in addition to PKR, γ(1)34.5 negatively regulates TBK1, which contributes viral replication and spread in vivo.  相似文献   

13.
Downstream regulator TANK binds to the CD40 recognition site on TRAF3   总被引:5,自引:0,他引:5  
TRAFs (tumor necrosis factor receptor [TNFR]-associated factors) bind to the cytoplasmic portion of liganded TNFRs and stimulate activation of NF-kappaB or JNK pathways. A modulator of TRAF signaling, TANK, serves as either an enhancer or an inhibitor of TRAF-mediated signaling pathways. The crystal structure of a region of TANK bound to TRAF3 has been determined and compared to a similar CD40/TRAF3 complex. TANK and CD40 bind to the same crevice on TRAF3. The recognition motif PxQxT is presented in a boomerang-like structure in TANK that is markedly different from the hairpin loop that forms in CD40 upon binding to TRAF3. Critical TANK contact residues were confirmed by mutagenesis to be required for binding to TRAF3 or TRAF2. Binding affinity, measured by isothermal titration calorimetry and competition assays, demonstrated that TANK competes with CD40 for the TRAF binding site.  相似文献   

14.
15.
16.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   

17.
人TBK1小干扰RNA质粒的构建及稳定干扰TBK1细胞株的筛选   总被引:1,自引:0,他引:1  
目的:构建人TANK结合激酶1(TBK1)的小干扰RNA真核表达质粒,并筛选出稳定干扰TBK1的细胞株。方法:根据文献报道的序列和载体的黏性末端,设计合成2条针对TBK1的DNA序列,退火后连接到载体pSUPER.retro.neo+gfp上,经测序分析正确后得到质粒psiTBK1。用脂质体转染质粒psiTBK1到MCF-7细胞中,经G418加压筛选稳定表达TBK1小干扰RNA的细胞株,用免疫印迹检测细胞中TBK1的表达情况,将干扰效果好的细胞株命名为MCF-7/siTBK1,再用萤光素酶试验检测MCF-7/siTBK1细胞对外源TBK1诱导干扰素-β(IFN-β)转录的情况。结果:免疫印迹结果证实建立的稳定细胞株MCF-7/siTBK1能够有效干扰TBK1的表达,并在外源TBK1存在的情况下抑制IFN-β的转录活性。结论:构建了表达TBK1小干扰RNA的质粒psiTBK1,筛选出稳定干扰TBK1表达的细胞株MCF-7/siTBK1,为深入研究TBK1在先天免疫中的作用提供了平台。  相似文献   

18.
ABSTRACT

TARDBP/TDP-43 (TAR DNA binding protein) proteinopathies are a common feature in a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD). However, the molecular mechanisms underlying TARDBP-induced neurotoxicity are largely unknown. In this study, we demonstrated that TARDBP proteinopathies induce impairment in the ubiquitin proteasome system (UPS), as evidenced by an accumulation of ubiquitinated proteins and a reduction in proteasome activity in neuronal cells. Through kinase inhibitor screening, we identified PTK2/FAK (PTK2 protein tyrosine kinase 2) as a suppressor of neurotoxicity induced by UPS impairment. Importantly, PTK2 inhibition significantly reduced ubiquitin aggregates and attenuated TARDBP-induced cytotoxicity in a Drosophila model of TARDBP proteinopathies. We further identified that phosphorylation of SQSTM1/p62 (sequestosome 1) at S403 (p-SQSTM1 [S403]), a key component in the autophagic degradation of poly-ubiquitinated proteins, is increased upon TARDBP overexpression and is dependent on the activation of PTK2 in neuronal cells. Moreover, expressing a non-phosphorylated form of SQSTM1 (SQSTM1S403A) significantly repressed the accumulation of insoluble poly-ubiquitinated proteins and neurotoxicity induced by TARDBP overexpression in neuronal cells. In addition, TBK1 (TANK binding kinase 1), a kinase that phosphorylates S403 of SQSTM1, was found to be involved in the PTK2-mediated phosphorylation of SQSTM1. Taken together, our data suggest that the PTK2-TBK1-SQSTM1 axis plays a critical role in the pathogenesis of TARDBP by regulating neurotoxicity induced by UPS impairment. Therefore, targeting the PTK2-TBK1-SQSTM1 axis may represent a novel therapeutic intervention for neurodegenerative diseases with TARDBP proteinopathies.Abbreviations: ALP: macroautophagy/autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; ATXN2: ataxin 2; BafA1: bafilomycin A1; cCASP3: cleaved caspase 3; CSNK2: casein kinase 2; FTLD: frontotemporal lobar degeneration; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; OPTN: optineurin; PTK2/FAK: PTK2 protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.  相似文献   

19.
目的:克隆人TANK结合激酶1(TBK1)基因,构建其真核表达载体,检测该基因在293细胞中的表达,并利用萤光素酶报告基因实验检测其生物活性。方法:应用RT-PCR方法,以HeLa细胞RNA为模板,扩增获得TBK1基因,定向克隆到pcDNA3-Flag载体中,以LipofectAMINE2000转染试剂转染pcDNA-Flag-TBK1至293细胞中进行瞬时表达,并利用萤光素酶报告基因实验检测诱导β干扰素(IFN-β)转录的情况。结果:测序结果表明,从人HeLa细胞总RNA中克隆到正确的TBK1基因全长编码序列,利用Western印迹检测其在293细胞中获得有效表达,利用萤光素酶报告基因实验检测TBK1可以诱导IFN-β转录激活。结论:真核表达的人TBK1具有相应的生物学活性,为研究其功能奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号