首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage phagocytosis activates NADPH oxidase, an electron transport system in the plasma membrane. This study examined the feasibility of utilizing electrons transferred through the plasma membrane via NADPH oxidase to run a biofuel cell. THP-1 human monocytic cells were chemically stimulated to differentiate into macrophages. Further they were activated to induce a phagocytic response. During differentiation, cells became adherent to a plain gold electrode which was used as anode in a two-compartment fuel cell system. The current production in the fuel cell always corresponded to the NADPH oxidase activity, which was evaluated by the amount of superoxide anion produced upon stimulation in combination with the expression levels of the different NADPH oxidase subunits in cells. Moreover, our results of different inhibitory tests let us conclude that (i) the current observed in the fuel cell originates from NADPH oxidase in activated macrophages and (ii) there are multiple electron transport pathways from the cells to the electrode. One pathway involves superoxide anions produced upon stimulation, additional not yet identified electron transport occurs independently of superoxide anions.This type of novel biofuel cell driven by living human cells may eventually develop into a battery replacement for small medical devices.  相似文献   

2.
The present study evaluates electron spin resonance (ESR) and the spin trapper 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) for analysis of superoxide radical production by human neutrophils interacting with viable Staphylococcus aureus and Staphylococcus epidermidis bacteria. To avoid auto-activation due to interaction with glass surfaces, neutrophils were preincubated in plastic tubes until the peak response was reached, and then transferred to a quartz flat cell to record the ESR spectra. The time point for peak response was identified by parallel analysis of the bacteria–neutrophil interaction using luminol amplified chemiluminescence. We found detectable ESR spectra from neutrophils interacting with as few as five bacteria of the weak activating S. epidermidis per neutrophil. Addition of the NADPH oxidase inhibitor diphenylene iodonium totally abolished spectra. Catalase, DMSO or an iron chelator had no impact on the produced spectra and ionomycin, a selective activator of intracellular NADPH oxidase, gave significant ESR spectra. Taken together, our results indicate that DEPMPO is cell permeable and detects NADPH oxidase derived superoxide anions formed in phagosomes or released by human neutrophils phagocytosing viable S. aureus and S. epidermidis. The technique may be used as a sensitive tool to evaluate superoxide anion production in human neutrophils.  相似文献   

3.
Studies were performed to examine the lateral organization of the NADPH oxidase system in the plasma membrane of human neutrophils. Analysis of the subcellular fractionation of human neutrophils by isopycnic sedimentation of cavitated cell lysates suggested that there may be more than one population of plasma membrane vesicles formed upon cell disruption. One population (30-32% sucrose) contained surface accessible wheat germ agglutinin binding sites, alkaline phosphatase activity, and cytochrome b. Another population (34-36% sucrose) contained membrane-bound flavin and, when the cells were prestimulated with phorbol myristate acetate (PMA), NADPH-dependent superoxide generating activity. Approximately 25% of the neutrophil cytochrome b cosedimented with the heavy population, confirming our previous hypothesis (Parkos et al. (1985) J. Biol. Chem. 260, 6541-6547) that only a fraction of the total cellular cytochrome b is involved in superoxide production. The heavy plasma membrane fraction was also enriched in membrane associated actin and fodrin as detected by Western blot analysis. After extraction of the plasma membrane vesicles with detergent cocktails, the majority of superoxide generating activity remained associated with the detergent insoluble pellet. Western blot analysis demonstrated that the pellets were also enriched in actin. Further analysis of these pellets using rate-zonal detergent-containing sucrose density gradients indicated that the superoxide generating complex had an approximate sedimentation coefficient of 80 S, suggesting that the neutrophil superoxide generating system may form a complex on the plasma membrane which is associated with or somehow organized by the membrane skeletal matrix. This organization may be of functional relevance not only to the actual production of superoxide, but also to the targeting of microbicidal oxidants.  相似文献   

4.
1. A microtechnique for quantitating human neutrophil NADPH oxidase in a cell-free system is described. 2. This spectrophotometric discontinuous (fixed time) method is less material-consuming than existing methods and is more useful for experiments in which superoxide production by neutrophils must be measured in a large number of samples. 3. Measurement of NADPH oxidase using the new method can be accomplished in a final vol of 0.15 ml. 4. In the assay, neutrophil membranes solubilized with deoxycholate were incubated for 3 min with cytosolic fractions, magnesium, sodium dodecyl sulfate, and cytochrome c in the absence of NADPH to preincubate the oxidase before the addition of the reducing agent. 5. The reaction was started by adding NADPH and 2 min later terminated by adding superoxide dismutase. 6. The apparent Km for NADPH obtained by the new method was almost the same as that by the authorized method (39.2 +/- 3.1 SD vs 36.8 +/- 1.6). Activation of neutrophil NADPH oxidase was characterized using the new assay method.  相似文献   

5.
Altered neutrophil function may contribute to the development of AIDS during the course of HIV infection. It has been described that Nef, a regulatory protein from HIV, can modulate superoxide production in other cells, therefore altered superoxide production in neutrophils from HIV infected patients, could be secondary to a direct effect of Nef on components of the NADPH oxidase complex. In this work, we describe that Nef, was capable of increasing superoxide production in human neutrophils. Furthermore, a specific association between Nef and p22-phox, a membrane component of the NADPH oxidase complex, was found. We propose that this association may reflect a capability of Nef to modulate by direct association, the enzymatic complex responsible for one of the most efficient innate defense mechanisms in phagocytes, contributing to the pathogenesis of the disease.  相似文献   

6.
To determine the temporal roles of phosphatidylinositol 3-kinase (PI3-kinase) and phospholipase D (PLD) during human neutrophil activation stimulated by a chemotactic peptide, we examined the kinetics of these enzymes and related them to a neutrophil function (superoxide production). Both wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), potent and specific inhibitors of PI3-kinase, inhibit PI3-kinase activity in human neutrophils and significantly inhibit superoxide production from the early phase. Ethanol has no effect on PI3-kinase and markedly inhibits superoxide production at the late phase. Although these agents are inhibitory to different degrees, when neutrophils are simultaneously treated with ethanol and PI3-kinase inhibitors, superoxide is not produced. These results suggest that PI3-kinase and PLD play a pivotal role in the signal transduction pathway of the chemo-attractant-receptor involved neutrophil activation. These enzymes produce second messengers which are required for subsequent superoxide production in human neutrophils. NADPH oxidase is activated in a PI3-kinase-dependent manner at the early phase, and PLD activity follows it and is related to superoxide production at the late phase in human neutrophils by stimulation with FMLP.  相似文献   

7.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

8.
Human polymorphonuclear neutrophils play a key role in host defenses against invading microorganisms. In response to a variety of stimuli, neutrophils release large quantities of superoxide anion (O2.-) in a phenomenon known as the respiratory burst. O2.- is the precursor of potent oxidants, which are essential for bacterial killing and also potentiate inflammatory reactions. Regulation of this production is therefore critical to kill pathogens without inducing tissue injury. Neutrophil production of O2.- is dependent on the respiratory burst oxidase, or NADPH oxidase, a multicomponent enzyme system that catalyzes NADPH-dependent reduction of oxygen to O2.-. NADPH oxidase is activated and regulated by various neutrophil stimuli at infectious or inflammatory sites. Proinflammatory cytokines such as GM-CSF, TNF and IL-8 modulate NADPH oxidase activity through a priming phenomenon. These cytokines induce a very weak oxidative response by PMN but strongly enhance neutrophil release of reactive oxygen species on exposure to a secondary applied stimulus such as bacterial N-formyl peptides. Priming phenomena are involved in normal innate immune defense and in some inflammatory diseases. The mechanisms underlying the priming process are poorly understood, although some studies have suggested that priming with various agonists is regulated at the receptor and post-receptor levels. Resolution of inflammation involves desensitization phenomena and cytokines are involved in this process by various mechanisms. A better understanding of phenomena involved in the regulation of NADPH oxidase could help to develop novel therapeutic agents for inflammatory diseases involving abnormal neutrophil superoxide production.  相似文献   

9.
The phagocyte NADPH oxidase catalyzes the reduction of molecular oxygen to superoxide and is essential for microbial defense. Electron transport through the oxidase flavocytochrome is activated by the Rac effector p67(phox). Previous studies suggest that Vav1 regulates NADPH oxidase activity elicited by the chemoattractant formyl-Met-Leu-Phe (fMLP). We show that Vav1 associates with p67(phox) and Rac2, but not Rac1, in fMLP-stimulated human neutrophils, correlating with superoxide production. The interaction of p67(phox) with Vav1 is direct and activates nucleotide exchange on Rac, which enhances the interaction between p67(phox) and Vav1. This provides new molecular insights into regulation of the neutrophil NADPH oxidase, suggesting that chemoattractant-stimulated superoxide production can be amplified by a positive feedback loop in which p67(phox) targets Vav1-mediated Rac activation.  相似文献   

10.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

11.
NAD(P)H oxidation is frequently measured to assay the activity of the neutrophil O-2-generating oxidase. It was found that 10(-4) M ethylene glycol bis (beta-aminoethyl ether)-N-N'-tetraacetic acid (EGTA) increased NAD(P)H oxidation by the 27,000 g granule fraction of resting and stimulated human neutrophils without altering net O-2 production. The commonly used chelating agents EDTA and diethylene triamine pentaacetic acid had similar effects. The addition of superoxide dismutase eliminated the effect of the chelating agents and thus demonstrated that the stimulated reaction was dependent upon O-2. KCN and bathophenanthroline disulfonate, an iron-chelating agent, prevented O-2-dependent NADPH oxidation by neutrophil granule fractions in the presence of EGTA. In contrast, bathocuproine disulfonate, a copper-chelating agent, mimicked the EGTA effect. The effects of both bathophenanthroline disulfonate and bathocuproine disulfonate were completely abolished when the agents were saturated with iron and copper, respectively. All the chelating agents studied, except bathophenonthroline disulfonate, also promoted O-2-dependent NADPH oxidation in a system wherein O-2 was generated by xanthine oxidase. Thus, commonly used chelating agents, by interacting with available iron and copper, may alter the apparent stoichiometry of the neutrophil O-2-generating oxidase and artifactually increase NADPH oxidation in other systems where O-2 is present.  相似文献   

12.
In response to certain cytokines and inflammatory mediators, the activity of the neutrophil NADPH oxidase enzyme is primed for enhanced superoxide production when the cells receive a subsequent oxidase-activating stimulus. The relative role of p38 MAPK in the priming and activation processes is incompletely understood. We have developed a 2-step assay that allows the relative contributions of p38 MAPK activity in priming to be distinguished from those involved in oxidase activation. Using this assay, together with in vitro kinase assays and immunochemical studies, we report that p38 MAPK plays a critical role in TNFalpha priming of the human and porcine NADPH oxidase for superoxide production in response to complement-opsonized zymosan (OpZ), but little, if any, role in neutrophil priming by platelet-activating factor (PAF) for OpZ-dependent responses. The OpZ-mediated activation process per se is independent of p38 MAPK activity, in contrast to oxidase activation by fMLP, where 70% of the response is eliminated by p38 MAPK inhibitors regardless of the priming agent. We further report that incubation of neutrophils with TNFalpha results in the p38 MAPK-dependent phosphorylation of a subpopulation of p47(phox) and p67(phox) molecules, whereas PAF priming results in phosphorylation only of p67(phox). Despite these phosphorylations, TNFalpha priming does not result in significant association of either of these oxidase subunits with neutrophil membranes, demonstrating that the molecular basis for priming does not appear to involve preassembly of the NADPH oxidase holoenzyme/cytochrome complex prior to oxidase activation.  相似文献   

13.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications.  相似文献   

14.
Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (Ie) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, Ie has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase Ie must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.  相似文献   

15.
The ability of neutrophils to generate free radicals is a crucial component of host defense (Babior, B. M. (1978) N. Engl. J. Med. 298, 659-668, 721-725. Neutrophil oxidants, however, can cause significant host tissue destruction (Weiss, S. J. (1989) N. Engl. J. Med. 320, 365-376), and the regulation of free radical production is not well understood. We have previously shown that recombinant antichymotrypsin (rACT), a serine protease inhibitor, inhibits superoxide production in intact neutrophils (Kilpatrick, L., Johnson, J. L., Nickbarg, E. B., Wang, Z., Clifford, T. F., Banach, M., Cooperman, B. S., Douglas, S. D., and Rubin, H. (1991) J. Immunol. 146, 2388-2393). Using a cell-free NADPH oxidase preparation, we now demonstrate that rACT alone has no effect on superoxide production and that antichymotrypsin-chymotrypsin (rACT.CT) complexes are required to inhibit superoxide, suggesting that neutrophil chymotrypsin-like proteases produce conformational changes in ACT, allowing it to become active in regulating superoxide production. Additionally, we have identified NADPH oxidase itself as the target for rACT.CT and have demonstrated that rACT.CT interferes specifically with activation of the NADPH oxidase without changing the Km for NADPH or the rate constant describing the rate-limiting step in activation. These observations suggest an important role for antichymotrypsin in the regulation of NADPH-oxidase activation, which is a prerequisite for neutrophil superoxide production, and predict possible therapeutic uses for rACT in conditions where unregulated neutrophil-free radical production has been implicated in the mechanism of tissue destruction.  相似文献   

16.
Red tide phytoplankton Chattonella marina is known to produce reactive oxygen species (ROS), such as superoxide anion (O(2)(-)), hydrogen peroxide (H(2)O(2)) and hydroxyl radical (&z.rad;OH), under normal physiological conditions. Although several lines of evidence suggest that ROS are involved in the mortality of fish exposed to C. marina, the mechanism of ROS generation in C. marina remains to be clarified. In this study, we found that the cell-free supernatant prepared from C. marina cells showed NAD(P)H-dependent O(2)(-) generation, and this response was inhibited by diphenyleneiodonium, an inhibitor of mammalian NADPH oxidase. When the cell-free supernatant of C. marina was analyzed by immunoblotting using antibody raised against the human neutrophil cytochrome b558 large subunit (gp91phox), a main band of approximately 110 kDa was detected. The cell surface localization of the epitope recognized with this antibody was also demonstrated in C. marina by indirect immunofluorescence. Furthermore, Southern blot analysis performed on genomic DNA of C. marina with a probe covering the C-terminal region of gp91phox suggested the presence of a single-copy gene coding for gp91phox homologous protein in C. marina. These results provide evidence for the involvement of an enzymatic system analogous to the neutrophil NADPH oxidase as a source of O(2)(-) production in C. marina.  相似文献   

17.
The ratio of superoxide production to oxidation of NADPH affected by the NADPH:O2 oxidoreductase of human neutrophils is strongly influenced by pH, NADPH substrate concentration, aging of the enzyme, or its exposure to excess deoxycholate. Freshly prepared enzyme exhibited a Km for NADPH of 52 microM as determined by assaying NADPH oxidase activity, or approximately 33 microM by measurement of superoxide formation. In the range of 100-150 microM NADPH at pH 7.6 and in the presence of 0.06% deoxycholate, the univalent flux of electron equivalents given up by NADPH to O2 was 99%. Following storage of the oxidoreductase overnight on ice, its Km for NADPH rose to 125 microM as determined by monitoring oxidation of NADPH but was unaltered when measured in terms of superoxide production. Concomitantly, its capacity to affect univalent reduction of O2 fell approximately 20-30% under the same assay conditions. Univalent flux rates of less than 40% were observed with exposure of the enzyme to concentrations of deoxycholate in excess of 0.1% or to pH values below 6.0 or above 8.0. The capacity of the enzyme to carry out univalent reduction fell with increasing NADPH concentrations in a manner resembling that previously reported with increasing concentrations of xanthine in the case of xanthine oxidase (Fridovich, I. (1970) J. Biol. Chem. 245, 4053-4057). The reduced form of the neutrophil oxidoreductase, like xanthine oxidase, thus appears to be capable of conducting both 1- and 2-electron transfer steps in reducing O2. Its capacity to affect univalent reduction of O2 depends upon the concentration of electron donor (NADPH) supplied as well as conditions of storage and assay of the native enzyme.  相似文献   

18.
Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To elucidate the specific role of Rac1 in neutrophils, we generated mice with a conditional Rac1 deficiency restricted to cells of the granulocyte/monocyte lineage. As observed in Rac2-deficient neutrophils, Rac1-deficient neutrophils demonstrated profound defects in inflammatory recruitment in vivo, migration to chemotactic stimuli, and chemoattractant-mediated actin assembly. In contrast, superoxide production is normal in Rac1-deficient neutrophils but markedly diminished in Rac2 null cells. These data demonstrate that although Rac1 and Rac2 are both required for actin-mediated functions, Rac2 is specifically required for activation of the neutrophil NADPH oxidase.  相似文献   

19.
Transplasma membrane electron transport, as assayed by external ferricyanide reduction, has been related to control of growth and hormone response of cells. Elicitor-stimulated transmembrane NADPH oxidase is important for bacteriocidal superoxide production by neutrophils. Since adriamycin is myelosuppressive and can stimulate superoxide production, its effects on the two redox systems of porcine neutrophil plasma membranes were compared. Adriamycin inhibits transplasma membrane ferricyanide and stimulates superoxide production activated by phorbal myristate acetate (PMA). Ferricyanide reduction in PMA-treated cells becomes resistant to inhibition by adriamycin. These results provide evidence for an independent effect of adriamycin on transmembrane ferricyanide reduction and on superoxide generation.  相似文献   

20.
NADPH oxidases are important sources of vascular superoxide, which has been linked to the pathogenesis of atherosclerosis. Previously we demonstrated that the Nox4 subunit of NADPH oxidase is a critical catalytic component for superoxide production in quiescent vascular smooth muscle cells. In this study we sought to determine the role of Nox4 in superoxide production in human aortic smooth muscle cells (AoSMC) and embryonic kidney (HEK293) cells under proinflammatory conditions. Incubation with tumor necrosis factor-alpha (TNF-alpha, 10 ng/ml) for 12 h increased superoxide production in both cell types, whereas angiotensin II, platelet-derived growth factor or interleukin-1beta had little effects. Superoxide production was completely abolished by the NADPH oxidase inhibitors diphenyline iodonium and apocynin, but not by inhibitors of xanthine oxidase, nitric oxide synthase or mitochondrial electron transport. TNF-alpha upregulated the expression of Nox4 in AoSMC at both message and protein levels, while Nox1 and Nox2 were unchanged. In contrast, upregulation of Nox2 appeared to mediate the enhanced superoxide production by TNF-alpha in HEK293 cells. We suggest that Nox4 may be involved in increased superoxide generation in vascular smooth muscle cells under proinflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号