首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uno T  Aoki K  Shikimi T  Hiranuma Y  Tomisugi Y  Ishikawa Y 《Biochemistry》2002,41(43):13059-13066
The binding of the copper(II) complex of water-soluble meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to double-helical polynucleotides has been studied by optical absorption, circular dichroism (CD), and resonance Raman spectroscopic methods. The target polymers were RNA and RNA.DNA hybrids consisting of rA.rU, rI.rC, rA.dT, and rI.dC base pairs. Relative to the metal-free H(2)TMPyP [Uno, T., Hamasaki, K., Tanigawa, M., and Shimabayashi, S. (1997) Inorg. Chem. 36, 1676-1683], CuTMPyP binds to poly(rA).poly(dT) and poly(rA).poly(rU) with a greatly increased binding constant. The external self-stacking of the porphyrin on the surface of the polymers was evident from the strong conservative-type induced CD signals. The signal intensity correlated almost linearly with the number of stacking sites on the polymer except for poly(rA).poly(dT), which showed extraordinarily strong CD signals. Thus, the bound porphyrin may impose an ordered architecture on the polymer surface, the stacking being facilitated by the more planar nature of the CuTMPyP than the nonmetal counterpart. Resonance Raman spectra of the stacked CuTMPyP were indistinguishable from those of the intercalated one with positive delta(Cbeta-H) and negative delta(Cm-Py) bending shifts, and hence the stacked porphyrins are suggested to adopt a similar structure to that of intercalated ones. Porphyrin flattening by copper insertion opens a new avenue for medical applications of porphyrins, blocking biological events related to RNA and hybrids in malignant cells.  相似文献   

2.
Fedoroff OY  Rangan A  Chemeris VV  Hurley LH 《Biochemistry》2000,39(49):15083-15090
Telomeric C-rich strands can form a noncanonical intercalated DNA structure known as an i-motif. We have studied the interactions of the cationic porphyrin 5,10,15,20-tetra-(N-methyl-4-pyridyl)porphine (TMPyP4) with the i-motif forms of several oligonucleotides containing telomeric sequences. TMPyP4 was found to promote the formation of the i-motif DNA structure. On the basis of (1)H NMR studies, we have created a model of the i-motif-TMPyP4 complex that is consistent with all the available experimental data. Two-dimensional NOESY data prompted us to conclude that TMPyP4 binds specifically to the edge of the intercalated DNA core by a nonintercalative mechanism. Since we have shown that TMPyP4 binds to and stabilizes the G-quadruplex form of the complementary G-rich telomeric strand, this study raises the intriguing possibility that TMPyP4 can trigger the formation of unusual DNA structures in both strands of the telomeres, which may in turn explain the recently documented biological effects of TMPyP4 in cancer cells.  相似文献   

3.
Porphyrins carrying four charged sidechains, e.g., meso-tetrakis[4-N-methylpyridiniumyl]- and meso-tetrakis[4-N-(2-hydroxyethyl)pyridiniumyl]-porphyrin, bound and intercalated similarly into DNA as measured by helix stabilization and DNA unwinding studies in the presence of DNA topoisomerase I. Despite their different bulky sidechains, these complexes gave essentially identical DNase I footprinting patterns. In contrast, tetrasubstituted porphyrins carrying three phenyl rings and a single positively charged pyridiniumyl sidechain did not intercalate and exhibited little affinity for DNA. Thus, the presence of charged sidechains on the porphyrin rather than their identity appears to be critical for efficient DNA intercalation. The results are discussed in regard to current models for the porphyrin-DNA intercalation complex.  相似文献   

4.
Noncovalent interactions of poly(L-lysine) (PL), oligopeptides L-lysyl-L-alanyl-L-alanine and (L-lysyl-L-alanyl-L-alanine)(2) with meso-tetrakis(4-sulfonatophenyl)porphine (TPPS), and poly(L-glutamic acid) (PLGA) with meso-tetrakis(1-methyl-4-pyridyl)porphine tetra-p-tosylate (TMPyP) in aqueous solutions have been studied using combination of spectroscopic methods: Vibrational circular dichroism (VCD) spectroscopy in the mid-infrared region provides a direct information on conformational changes of the polypeptides and oligopeptides caused by interactions with porphyrins; ultraviolet-visible absorption, fluorescence, and electronic circular dichroism (ECD) reveal the aggregation characterization of the porphyrin part of the complexes. Interactions of TPPS with tripeptide, hexapeptide, and PL containing about ten amino acid residues in the molecular chain are accompanied with the changes of VCD patterns in the amide I' region. In these cases, the conformation of the oligopeptide part of complexes is obviously influenced by interactions with TPPS and partial changes of random coil structure are observed in VCD. When PL was composed of the hundreds of lysine residues, just a weak intensity decrease was detected and the shape of VCD spectrum typical for the random coil structure was preserved. As follows from the uv-vis absorption and fluorescence spectra, porphyrin molecules are attached to peptides by electrostatic interaction as a monomer or dimer and interaction between porphyrin and peptide depends on the polypeptide chain length. For the PLGA-TMPyP system with PLGA containing from tens to hundreds of glutamic acid residues in the chain, the VCD spectra were unchanged when TMPyP was presented in the aqueous solution of PLGA and random coil conformation of PLGA-TMPyP aggregates was preserved.  相似文献   

5.
Kim JO  Lee YA  Yun BH  Han SW  Kwag ST  Kim SK 《Biophysical journal》2004,86(2):1012-1017
Circular dichroism (CD) spectra of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) that are associated with various duplex and triplex AT oligomers were investigated in this study. A strong positive CD was apparent for both the TMPyP complexed with duplex d[(A-T)(12)](2), d(A)(12).d(T)(12) and triplex d(A)(12).d[(T)(12)](2) at a low mixing ratio. As the mixing ratio increased, bisignate excitonic CD was produced for TMPyP complexed with duplexes, whereas the positive CD signal remained the same for the TMPyP-d(A)(12).d[(T)(12)](2) complex. This difference in the CD spectrum in the presence of duplex and triplex oligomers indicates that the moderate stacking of TMPyP occurs at the major groove of the duplex and the monomeric binding occurs in (or near) the minor groove. When TMPyP forms a complex with duplex d[(A-T)(6)](2) only excitonic CD was observed, even at a very low mixing ratio. Therefore, at least seven or more basepairs are required for TMPyP to exhibit a monomeric CD spectrum. After close analysis of the CD spectrum, the TMPyP-poly[d(A-T)(2)] complex could be explained by a combination of the CD spectrum of the monomeric, moderately stacked, and extensively stacked TMPyP.  相似文献   

6.
Lubitz I  Borovok N  Kotlyar A 《Biochemistry》2007,46(45):12925-12929
Interaction of meso-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with G4-wires composed of approximately 1000 stacked tetrads (Kotlyar, A. B., Borovok, N., Molotsky, T., Cohen, H., Shapir, E., and Porath, D. (2005) Long monomolecular G4-DNA nanowires, Adv. Mater. 17, 1901-1905) was studied. These wires exist in either K (Na)-free or K forms in contrast to short telomeric G-quadruplexes, which are stable only in the presence of monovalent cations. We showed that a stable complex between K-free G4-wires and the porphyrin is formed at a TMPyP to tetrad molar ratio of 0.5. A 19 nm shift and a hypochromicity of 58% in the absorption spectrum, the induced CD of the porphyrin, and efficient energy transfer between TMPyP and K-free G4-wires suggest an intercalative mechanism of TMPyP binding. The K form interacts with TMPyP much weaker than the K-free form of the wires. Binding of TMPyP to the K form is characterized by a small (3 nm) shift of the Soret band, a weak positive induced CD in the Soret region, and the absence of energy transfer between the G-bases and the porphyrin. These parameters reflect a nonintercalative binding of TMPyP to the K form of the wires. We suggest that K ions positioned in the center space between the adjacent tetrads limit the access of TMPyP and other organic molecules to this region, thus enabling only nonintercalative modes of ligand binding to G-quadruplex DNAs.  相似文献   

7.
Interactions of the water-soluble Mn(III) complex of meso-tetrakis (4-N-methyl-pyridiniumyl) porphyrin (Mn(III)TMPyP) with DNA in aqueous solutions at low (0.01 M) and high (0.2 M) ionic strengths have been studied by optical absorption, resonance light scattering (RLS) and 1H NMR spectroscopies. Optical absorption and RLS measurements have demonstrated that in DNA solutions at low ionic strength the Mn(III)TMPyP form aggregates, which are decomposed at DNA excess. At high ionic strength the aggregation was not observed. We explain this effect by assuming that upon increase in ionic strength, Mn(III) TMPyP dislocates from the DNA sites, which produces better conditions for the porphyrin aggregation, to sites where the aggregation is hindered. The 1H NMR data demonstrated that the aggregation observed at low ionic strength reduces the paramagnetism of Mn(III)TMPyP. This phenomenon was not observed at the high ionic strength in the absence of aggregation.  相似文献   

8.
The binding modes of the free-base meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) complexed with [d(AT)n]2 oligonucleotides (where n=3-8, corresponding to 6 to 16 AT base pairs) were studied by circular dichroism (CD). When associated with the shortest oligonucleotide, ([d(AT)3]2), a bisignate CD spectrum was produced in the Soret absorption region at the mixing ratio between 2.0 and 0.25, corresponding to one TMPyP per 0.5 to 4 oligonucleotides. Apparent bisignate CD was attributed to a stacked TMPyP along the DNA. On the other hand, when the oligonucleotide length reaches one helical turn or longer, ([d(AT)n]2, n=6,7,8), TMPyP exhibited a positive CD signal, that corresponds to the monomeric groove binding mode, at the mixing ratio below 1.0 (one TMPyP per oligonucleotide). As the mixing ratio increases, the CD signal was best accounted for by the sum of the stacked and groove-binding TMPyP. At the intermediate oligonucleotide length ([d(AT)n]2, n=4,5), the CD spectrum appeared to be the sum of the stacked and groove binding TMPyP at all mixing ratios. Therefore, it is conclusive that the full dispersion of TMPyP requires at least one helical turn of the AT sequence at a mixing ratio below 1.0. Further increase of the mixing ratio resulted in the stacking of TMPyP even at the long oligonucleotides.  相似文献   

9.
The action of irradiated cationic Fe(III)TMPyP and anionic Fe(III)TPPS4 forms of mesoporphyrins on mitochondrial functions was investigated using experimental conditions that caused minimal effects on mitochondria in the dark. Treatment of mitochondria with 1 microM Fe(III)TMPyP for 2 min decreased the respiratory control by 3% in the dark and 28% after irradiation. Fe(III)TPPS4 (1 microM) had no significant effect on respiratory control under any of the above conditions. Both porphyrins increased the mitochondrial production of reactive oxygen species in the presence of Ca2+; however, the effect of Fe(III)TMPyP was significantly stronger. In both cases, this overproduction was associated with membrane lipid peroxidation. It was also observed that the association constant of Fe(III)TMPyP with mitochondria was 11 times higher than that of Fe(III)TPPS4. In conclusion, the damage to isolated mitochondria induced by Fe(III)TMPyP under illumination was larger than by Fe(III)TPPS4, probably because its cationic charge favors association with the mitochondrial membrane. This is supported by the decrease in the association constant of Fe(III)TMPyP with mitochondria in higher salt medium.  相似文献   

10.
The nuclear transport pathways of the photosensitizers meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) and meso-tetra(4-N-methylpyridyl)porphyrin (TMPyP) during photosensitization and oxidative stress were characterized in CT-26 murine colon carcinoma cells using fluorescence microscopy and multi-pixel spectral imaging. Prior to irradiation, TPPS4 and TMPyP localized mainly in the lysosomes, while irradiation or H2O2 treatment induced a relocalization into the nucleus and nucleoli. Flow cytometry analysis of isolated nuclei from the treated cells showed an increase in nuclear fluorescence accompanying the relocalization. Isolation and separation of the nuclear proteins according to molecular weight was performed using a sephadex G-100 column. The protein fractions exhibiting high fluorescence were separated by high performance liquid chromatography. Five major classes of proteins with a retention time of 1, 7, 11, 12 and 15 min were obtained. Each photosensitizer was associated with a distinct class of proteins. While TPPS4 fluorescence was detected in the protein fraction with a retention time of 11 min, TMPyP fluorescence was associated with a protein fraction having a retention time of 7 min. We conclude that although oxidative stress triggers entry into the nucleus of both TPPS4 and TMPyP, each sensitizer uses a distinct transport mechanism based on its chemical properties.  相似文献   

11.
DNA-protein condensates that give positive and negative psi-type circular dichroism (CD) spectra (psi condensates) bind intercalative and nonintercalative dyes. CD depends both on circular differential scattering and on circular differential absorption; scattering-corrected CD measurements are approximations to circular differential absorption. The circular differential scattering and scattering-corrected CD patterns observed in the DNA absorption band of psi condensates are mimicked in the induced CD band of intercalators bound to psi condensates. The induced scattering-corrected CD and circular differential scattering patterns of the groove-binding dye Hoechst 33342 bound to psi condensates are the inverse of the patterns seen with intercalative dyes, whereas the groove-binding dye manganese(III) meso-tetrakis(4-N-methylpyridyl)porphine [MnIIITMpyP-4] shows no significant induced CD patterns. The large circular differential scattering and scattering-corrected CD bands are interpreted as resulting from long-range chiral packing, rather than near-neighbor short-range interactions. Dyes intercalated into the DNA of the psi condensates have the same type of long-range chiral packing as the DNA bases. Therefore, the psi-type CD spectra seen in the UV spectra originating from the long-range packing of the DNA bases are also observed in the visible spectra when dyes are intercalated in the DNA of the psi condensates. Our interpretation comes from the observation that the induced circular differential scattering and circular differential absorption of the dye bound to the psi condensates depend only upon the sign of the circular differential absorption and the pattern of the circular differential scattering of the psi condensates without bound dye.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

13.
We have performed systematic spectroscopic titrations to characterize the binding reaction of cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) with the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d[TAGGG(TTAGGG)3T] (S24), for which special effort was made to examine the TMPyP4-G4 binding stoichiometry, the binding modes, and the conformational conversion of the G4 structure under different potassium ion (K+) concentration. It is found that, in the presence of 0, 10 mM, and 100 mM K+, TMPyP4 forms a complex with the anti-parallel G4 in a TMPyP4-to-G4 molar ratio of 5, 5 and 3, respectively, and the increase of K+ concentration would reduce the binding affinity of TMPyP4 to G4. For the TMPyP4-G4 complex, the end-stacking mode and groove binding mode were presumed mainly by the results of time-resolved fluorescence spectroscopy in the three cases. Most importantly, it is found that TMPyP4 can directly induce the formation of the anti-parallel G4 structure from the single-strand oligonucleotide S24 in the absence of K+, and that it can preferentially induce the conformational conversion of the G4 structure from the hybrid-type to the anti-parallel one in the presence of K+.  相似文献   

14.
The circular and linear dichroism (CD and LD) spectral properties of the meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP)–DNA complex at a [porphyrin]/[DNA] ratio below 0.015 showed that TMPyP intercalates between DNA base pairs. Contrarily, when cisbis(N-methylpyridinium-4-yl)porphyrin (BMPyP) is associated with DNA, no CD spectrum was induced and a bisignate LD spectrum was observed. These spectral properties of both the TMPyP and BMPyP were essentially retained when the minor groove of the DNA was saturated with 4′,6-diamidino-2-phenylindole (DAPI). The fluorescence of the DNA-bound DAPI was effectively quenched by BMPyP and TMPyP. The quenching by BMPyP can be described through a pure static mechanism while TMPyP quenching produced an upward bending curve in the Stern–Volmer plot. Quenching efficiency was by far greater than predicted by the “sphere of action model”, suggesting that the DNA provides some additional processes for an effective energy transfer.  相似文献   

15.
The binding mode of porphyrins, namely meso-tetrakis(N-methyl pyridinium-4-yl)porphyrin (H(2)TMPyP), was classified in this work by absorption and circular dichroism(CD) spectroscopy. The three binding modes of intercalation, minor groove binding and external stacking exhibit their own characteristic absorption and CD spectra. Intercalation occurs for this porphyrin when bound to GC-rich polynucleotides at a low mixing ratio, as expected. This binding mode produces hypochromism and a red shift in the absorption band and a negative CD band in the Soret absorption region. When it is complexed with AT-rich polynucleotides at a low mixing ratio, hypochromism and a red shift in the absorption band and a positive CD peak is apparent, and this species can easily be assigned to the minor groove-binding mode. For both AT- and GC-rich polynucleotides at a high binding ratio, an excitonic CD was apparent. The sign of excitonic CD depends on the order of the DNA bases; the CD spectra of H(2)TMPyP complexed with non-alternating homopolymer (disregarding the nature of base pairs, i.e. AT or GC) are characterized by a positive band at short wavelengths followed by a negative band at long wavelengths. In contrast, those complexed with alternating polynucleotide were opposite to those of non-alternating homopolymers.  相似文献   

16.
We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.  相似文献   

17.
Zhao L  Ma R  Li J  Li Y  An Y  Shi L 《Biomacromolecules》2008,9(10):2601-2608
Micellization of poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG114-b-P4VP61) induced by 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (TPPS) in acidic solutions were studied by dynamic and static light scattering, atomic force microscope, and UV-vis spectroscopy. The resultant complex micelles had a core-shell structure with the electrostatically complex TPPS/P4VP as the core and the soluble PEG as the shell. The anionic TPPS in the micellar core formed J-aggregates at pH 1.5-2.5 and H-aggregates at pH 3.0-4.0, respectively. Interconversion between the J-aggregates and the H-aggregates was carried out by adjusting the pH value of the micelle solutions. It is worth noting that the micelles showed strong split Cotton effect in the circular dichroism spectra although TPPS and the copolymer were all achiral. The resulting chirality sign could be selected by the hydrodynamic forces of a stirring vortex. Positive or negative chiral signals appeared when stirring clockwise or anticlockwise.  相似文献   

18.
Two novel cationic porphyrins bearing five-membered rings at the meso-positions, meso-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin (H2TDMImP) and meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (H2TDMPzP), have been synthesized. These two compounds interact with calf thymus DNA (CTDNA) in different binding modes from that of mesotetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP). H2TDMImP outside binds to the minor groove of CTDNA while H2TDMPzP intercalates into CTDNA. These two novel cationic porphyrins strongly bind to CTDNA even at high ionic strength and the binding constant of H2TDMPzP to CTDNA is comparable to that of H2TMPyP. The binding of H2TDMImP to CTDNA is enthalpically driven. The favorable free energy changes in binding of H2TDMPzP to CTDNA come from the large negative enthalpy changes accompanied by small positive entropy changes.  相似文献   

19.
The equilibrium behavior of cationic iron(III) meso-tetrakis(4-N-methyl-pyridiniumyl) porphyrin, Fe(III)TMPyP, in aqueous solution was studied as a function of pH by optical absorption, EPR and (1)H NMR spectroscopies. The presence of several Fe(III)TMPyP species in solution was unequivocally demonstrated: monomeric porphyrin species (a monoaqueous five-coordinated complex, a diaaqueous six-coordinated complex and a monoaqueous-hydroxo six-coordinated complex), a micro-oxo dimer and a bis-hydroxo complex. The addition of salt to the porphyrin solution leads to a simplification of the equilibrium as a function of pH. In this case, only three species were observed in solution: a monomeric porphyrin species, a micro-oxo dimer and a bis-hydroxo complex. Optical absorption, EPR and (1)H NMR spectra contributed to the characterization of these species. Four critical pH values (pK) for Fe(III)TMPyP were obtained in pure buffer and only three pK values were observed in the presence of NaCl. The addition of salt favors the presence of the dimeric species in solution and simplifies the equilibrium in the acidic pH range.  相似文献   

20.
Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius2 and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70–80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO3 anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO3 anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号