首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overall measures of mandibular molars reflect the combined size contributions of the component cusps and ridges. Until now, the size hierarchy of primary and permanent mandibular molar cusps remained unclear. This paper utilizes the relative plane surface areas (basal area dimensions) of the individual molar cusps, as assays of cusp size to demonstrate cusp size variations within populations, antimere cuspal variations, sexual dimorphism, and, the heritability of cusp size. Duplicate dental casts from 199 pairs of like-sexed twins provide the raw dats. Defined anatomic landmarks on the occlusal surfaces were reduced to X-Y rectangular coordinates prior to the computation of the basal areas dimensions. The results establish a cusp size hierarchy specific for molar type, i.e., five-cusped molars with a distal fovea and distal marginal ridge (5fd), five-cusped molars without a distal fovea and without a distal marginal ridge (5o), and four-cusped molars (4c). Sexual dimorphism in cusp size is apparent in 5fd molar cusped but not in 5o molar cusps. However, males have a significantly higher frequency of 5fd molars. Females have a higher frequency of smaller 5o and 4c molars which have fewer crown components. Moreover, female 5o molars have cusps as large as or larger than 5o male molor cusps. Right-side-left-side differences exist between antimere cusps based on relatively low correlations. The mirroring of molor types occurs infrequently. When observed, most intrapair differences for cusp size, using F-ratios, indicate a low component of hereditary variability.  相似文献   

2.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

3.
Second molar length and body weight are used to test the correlation between tooth size and body size in living Hominoidea. These variates are highly correlated (r= 0.942, p less than 0.001), indicating that tooth size can be used in dentally unspecialized fossil hominoids as one method of predicting the average body weight of species. Based on tooth size, the average body weight of Aegyptopithecus zeuxis is estimated to have been beteen 4.5 and 7.5 kg, which is corroborated by known cranial and postcranial elements. Using Radinsky's estimates of brain size, the encephalization quotient (EQ) for Aegyptopithecus was between 0.65 and 1.04. A similar analysis for Proconsul africanus yields a body weight between 16 and 34 kg, and an EQ between 1.19 and 1.96.  相似文献   

4.
The association between mandibular robusticity, postcanine megadontia, and canine reduction in hominins has led to speculation that large and robust jaws might be required to spatially accommodate large canine and molar teeth in hominins and other primates. If so, then variations in mandibular form that are generally regarded as biomechanical adaptations to masticatory demands might instead be incidental effects of functional requirements of tooth support. While the association between large teeth and deep, robust jaws in hominins is well known, the relationship between tooth size and jaw size has not been systematically evaluated in a comparative sample of primates. We evaluate the relationships between molar tooth size, canine tooth size, and mandibular corpus and symphyseal dimensions in a sample of adult anthropoids in interspecific (n=84 species) and intraspecific (n=36 species) contexts. For intraspecific comparisons, tooth size and jaw size are correlated, but for a majority of species this is a function of sexual size dimorphism. Interspecific comparisons lend little direct support to the hypothesis that jaw breadth directly covaries with molar tooth breadth, but they do support the hypothesis that mandibular depth is associated with canine tooth size in males. The latter observation suggests that if there is a causal association between canine size and mandibular depth, it is subject to a threshold effect. In contrast, neither corpus nor symphyseal robusticity, measured as a shape index of breadth/height, are correlated with tooth size. Our results suggest that further studies of the relationship between tooth size and corpus morphology should focus on tooth root size and corpus bony architecture, and that species-specific factors should have a strong impact on such relationships.  相似文献   

5.
Disagreement is current over the question of whether relatively large teeth in some large primates are a natural outcome of growth trends instead of an indication of intrinsic differences. A cross-primate survey of dental scaling relative to skull (and inferred body) size is given in this study, using a principal component technique to measure the multivariate growth relation between two sets of data: dental size and cranial size. Cheek teeth are strongly positively allometric in restriced taxonomic groups, especially in cercopithecoids. Conversely, the allometry drops to an almost linear proportional growth relation when variation in diet is controlled.  相似文献   

6.
Carabelli's trait is a morphological feature that can occur on the protocone of human maxillary molars. This study tests the hypothesis that Carabelli's trait is correlated statistically with the dimensions of the crown's four principal cusps or whether, as a cingular feature, the trait truly accretes onto an otherwise unaffected crown. Computer-assisted image analysis was used to measure the 6 intercusp distances and 12 angular relationships among cusp tips on the permanent first molar of 300 young adult American whites. Carabelli's complex was scored using an 8-grade ordinal scheme. Crown size was quantified in three ways, namely as 1) maximum mesiodistal and buccolingual diameters, 2) the 6 intercusp distances, and 3) the 12 angular cusp arrangements. There was no sex difference in the morphological expression of Carabelli's trait in this sample. Overall crown size and intercusp distances were significantly and progressively larger in molars with larger Carabelli's trait expressions. There are graded size responses between crown size (mesiodistal and buccolingual diameters), sizes of the four principal cusps, and morphological stage of Carabelli's complex, though the statistical relationships are appreciably stronger in males than females. Carabelli's trait occurs preferentially in larger molars. In contrast, angular (shape) relationships among cusp tips are not discernibly affected by trait size in either sex. There is the situation, then, that Carabelli's trait is developmentally correlated with crown size, but with no apparent alteration of cusp arrangements, suggesting that the increases are isometric across the occlusal table. Why the association is much weaker in females remains speculative, but these data provide yet another line of evidence that, within a population, tooth size is associated in a positive fashion with crown complexity.  相似文献   

7.
Prosimians have smaller brains relative to their body sizes than do monkeys. Brain and body weights, however, are associated not only on the basis of the brain integrating sensorimotor functions, but also on the basis of the body's requirement to support the energetic needs of the brain. Prosimians differ from monkeys in that they have lower rates of oxygen turnover. When body size is adjusted for its rate of oxygen turnover, monkeys and prosimians have equivalent relative brain sizes. A consideration of the brain's energy requirements helps to clarify brain-body relationships.  相似文献   

8.
Shape analyses of cross-sectional mandibular molar morphology, using Euclidean Distance Matrix Analysis, were performed on 79 late Miocene hominoid lower molars from Yuanmou of Yunnan Province, China. These molars were compared to samples of chimpanzee, gorilla, orangutan,Lufengpithecus lufengensis, Sivapithecus, Australopithecus afarensis, and human mandibular molars. Our results indicate that the cross-sectional shape of Yuanmou hominoid lower molars is more similar to the great apes that to humans. There are few differences between the Yuanmou,L. lufengensis, andSivapithecus molars in cross-sectional morphology, demonstrating strong affinities between these three late Miocene hominoids. All three of the fossil samples show strong similarities to orangutans. From this, we conclude that these late Miocene hominoids are more closely related to orangutants than to either the African great apes or humans.  相似文献   

9.
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large‐ and small‐brained animals and only minor sex‐specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.  相似文献   

10.
Adult static intraspecific allometry of tooth size was evaluated in a sample of 66 Otolemur crassicaudatus (34 male, 32 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of canines and postcanine teeth of both arcades and were scaled to four viscerocranial measurements: bimaxillary width; maxillo-alveolar length; mandibular length and bigonial width. Individual tooth crown areas were also scaled to total skull length, body length and body weight. From the log-transformed analyses it is concluded that postcanine tooth size was unrelated to body length or weight, and poorly correlated to skull length or jaw size. Although viscerocranial size appears to be independent of body size, these measures are well correlated to skull length. It is shown that the longer the skull, the shorter and narrower the maxilla, and the longer and broader the mandible. Canines are shown to scale negatively allometric to skull length, hence, large animals will have relatively small canines.  相似文献   

11.
In order to reassess previous hypotheses concerning dental size reduction of the posterior teeth during Pleistocene human evolution, current fossil dental evidence is examined. This evidence includes the large sample of hominid teeth found in recent excavations (1984–1993) in the Sima de los Huesos Middle Pleistocene cave site of the Sierra de Atapuerca (Burgos, Spain). The lower fourth premolars and molars of the Atapuerca hominids, probably older than 300 Kyr, have dimensions similar to those of modern humans. Further, these hominids share the derived state of other features of the posterior teeth with modern humans, such as a similar relative molar size and frequent absence of the hypoconulid, thus suggesting a possible case of parallelism. We believe that dietary changes allowed size reduction of the posterior teeth during the Middle Pleistocene, and the present evidence suggests that the selective pressures that operated on the size variability of these teeth were less restrictive than what is assumed by previous models of dental reduction. Thus, the causal relationship between tooth size decrease and changes in food-preparation techniques during the Pleistocene should be reconsidered. Moreover, the present evidence indicates that the differential reduction of the molars cannot be explained in terms of restriction of available growth space. The molar crown area measurements of a modern human sample were also investigated. The results of this study, as well as previous similar analyses, suggest that a decrease of the rate of cell proliferation, which affected the later-forming crown regions to a greater extent, may be the biological process responsible for the general and differential dental size reduction that occurred during human evolution. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Changes in size, whether ontogenetic or phylogenetic, tend to be associated with changes in shape. This allometry can arise through two different evolutionary mechanisms: (1) selection acting primarily on overall size may be associated with changes in shape because of physiological and mechanical constraints or differential responses of different body components; or (2) selection acting primarily on shape (on the size of specific body components) may be associated with changes in overall size because of genetic correlations, and thus correlated responses, of other body components. To assess the relative importance of these two mechanisms, shape polymorphism is examined along two axes of size dimorphism (sex and wing morphology) in the common waterstrider, Gerris remigis Say. Eight measurements were made of body and appendage components of 234 adults, from three independent populations. Univariate and multivariate analyses reveal that both sexes and wing morphs differ significantly in size and shape. Shape differentiation along the two axes of size dimorphism is found to be dissimilar, partially independent of size, and strongly correlated with the ecological specialization of the various morphs. These observations suggest that selection is acting directly on shape, and thus that allometry in this species primarily reflects shape-mediated changes in size (mechanism 2), rather than size-mediated changes in shape. The role of developmental processes in facilitating this shape differentiation is discussed.  相似文献   

13.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

14.
Allometric studies of the gross neuroanatomy of adults from nine species of spiders from six web-weaving families (Orbicularia), and nymphs from six of these species, show that very small spiders resemble other small animals in having disproportionately larger central nervous systems (CNSs) relative to body mass when compared with large-bodied forms. Small spiderlings and minute adult spiders have similar relative CNS volumes. The relatively large CNS of a very small spider occupies up to 78% of the cephalothorax volume. The CNSs of very small spiders extend into their coxae, occupying as much as 26% of the profile area of the coxae of an Anapisona simoni spiderling (body mass < 0.005 mg). Such modifications occur both in species with minute adults, and in tiny spiderlings of species with large-bodied adults. In at least one such species, Leucauge mariana, the CNS of the spiderling extends into a prominent ventral bulge of the sternum. Tiny spiders also have reduced neuronal cell body diameters. The adults of nearly all orbicularian spiders weave prey capture webs, as do the spiderlings, beginning with second instar nymphs. Comparable allometric relations occur in adults of both orb-weaving and cleptoparasitic species, indicating that this behavioral difference is not reflected in differences in gross CNS allometry.  相似文献   

15.
Landmark data were collected from cross sections and occlusal images of mandibular molar crowns, and Euclidean distance matrix analysis (EDMA) was used to identify metameric morphological variation between the first and second mandibular molars of living taxa: Gorilla gorilla (n = 30), Pan troglodytes (n = 34), and Homo sapiens (n = 26). Two patterns of metameric variation were identified, one unique to humans and the other shared by chimpanzees and gorillas. In order to assess the utility of this type of analysis for the interpretation of the hominid fossil record, 19 mandibular molars from Sterkfontein Member 4, South Africa, were examined. The pattern of metameric variation of the Sterkfontein molars resembled that of the African great apes, and differed from the modern human pattern. These results demonstrate that data on metameric variation may provide information regarding function or developmental processes previously indiscernible from fossil material.  相似文献   

16.
A Type II tooth cusp occurrence asymmetry proposed for human twins in 1974 but not observed until recently was described in a female monozygotic twin pair. Am J Phys Anthropol 105:93–95, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
Every species of non-human primates, especially those of hominoids, has a variety of reproductive structures and accompanying male traits, such as sexual dimorphism and relative size of testis to body weight, which may be at least partly triggered by DNA on the Y-chromosome. Recently, a panel of PCR (Polymerase Chain Reaction) primer sets were designed to amplify various DNA segments spread over the human Y-chromosome. We applied these primer sets for amplification of DNA segments on the Y-chromosome of hominoid species: chimpanzee, bonobo (Pygmy chimpanzee), gorilla, orangutan, whitehanded gibbon, agile gibbon, and Japanese monkey as an out group. The DNA segments including SRY, testis determining factor, and ZFX/ZFY could be amplified clearly in males of all species examined. These highly conserved genes may serve important biological functions. However, as the phylogenic distance from humans increased, some of the DNA segments could not be amplified. For example, DYZ1 (SY160) could be amplified only using human DNA as a template, and DYF60S1 (SY61), DYZ217 (SY126) and DYS233 (SY148) could be amplified only using human and African great ape DNA. It is interesting to note that locus DYS250 (SY17) could not be amplified in chimpanzee and bonobo but amplified in gorilla and orangutan. Locus DYS251 (SY18) was amplified in all species except the white-handed gibbon. These results indicate that a variety of evolutionary events including mutation, deletion, insertion, and rearrangement occurred in Y-chromosome DNA during primate evolution.  相似文献   

20.
Cusp dimensions of human maxillary molars were compared between males and females to determine whether the later-developed, distal cusps displayed greater sexual dimorphism than the earlier-developed, mesial cusps, and whether the later-forming second molar displayed greater sexual dimorphism than the first molar. First and second permanent molar crowns (M1 and M2) were measured indirectly, using dental casts obtained from 117 Japanese (65 males and 52 females). Measurements included maximum mesiodistal and buccolingual crown diameters and the diameters of the four main cusps: the paracone, protocone, metacone, and hypocone. Mean values of crown dimensions were larger in males than in females for both M1 and M2, but the sexual difference in protocone diameter of M1 was not significant. The protocone in M1 showed the least amount of sexual dimorphism, followed by the metacone, hypocone, and paracone, while in M2, the percentage sexual dimorphism corresponded to the order of cusp formation: paracone, protocone, metacone, and hypocone. With the exception of the paracone diameter, M2 showed greater sexual dimorphism than M1. Sexual dimorphism was not always greater in the later-developed, distal cusps of M1 or M2, but the protocone, the most important cusp in terms of occlusal function, displayed the least dimorphism in M1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号